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ABSTRACT 

 

MATTHEW JAMES SCHEFFEL. N-Acetyl Cysteine Protects Melanoma Specific Cytotoxic T 
Cells from T Cell Receptor Restimulation Induced Activation of the DNA Damage Response 
Pathway and Enhances Tumor Control In Vitro and In Vivo. (Under the direction of 
CHRISTINA VOELKEL-JOHNSON). 

 

The adoptive transfer of autologous melanoma antigen-specific T cells has 

demonstrated a remarkable improvement in clinical outcomes for patients with late-

stage metastatic melanoma.  However, the majority of patients do not achieve a durable 

response.  To achieve a sufficient quantity of cells for transfer, T cells undergo a rapid 

expansion protocol which makes them more susceptible to activation-induced cell death 

(AICD).  As the persistence of transferred T cells is necessary for optimal patient response, 

limitation of persistence via AICD is likely a constraint on clinical efficacy.  The 

accumulation of oxidative stress caused by TCR restimulation has previously been 

demonstrated to be necessary for the onset of AICD.  The data contained within in this 

thesis reveal that accumulation of ROS escalates into the incursion of the appearance of 

γH2AX foci, which are indicative of DNA damage, and activation of the DNA damage 

response pathway characterized by autophosphorylation of ATM on Ser1981 and ATM 

mediated phosphorylation of the tumor suppressor p53 on Ser15.  Treatment with the 

glutathione pro-drug N-acetyl cysteine (NAC) significantly reduced the upregulation of 

γH2AX and subsequent ATM activation and cell death.  Additionally, both murine Pmel-1 

T cells and TIL1383I TCR transduced therapeutic human T cells exhibited less susceptibility 

to the upregulation of γH2AX and onset of AICD when NAC was added to the medium 
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during extended culture.  Both Pmel-1 T cells and TRP-1 TCR transduced murine 

splenocytes cultured in NAC prior to adoptive transfer into B16F10 challenged mice 

exhibited enhanced control of tumor burden and survival of recipient mice.  TIL1383I TCR 

transduced T cells cultured in NAC demonstrated reduced expression of the exhaustion 

and senescence markers PD-1 and CD57 as well as the exhaustion associated transcription 

factors EOMES and Foxo1.  Taken together, the results contained in this thesis 

demonstrate the addition of NAC to the rapid expansion of therapeutic T cells bolsters 

the overall fitness and anti-melanoma functionality of the cells and could potentially 

improve the quality and therapeutic efficacy of adoptive T cell therapeutics infused into 

patients.  
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CHAPTER 1 – REVIEW OF LITERATURE 

 

The Development of Adoptive Cell Transfer Therapy 

In the late 1800s, William Coley, a bone surgeon from New York, observed several 

cases of cancer where the patient exhibited signs of remission upon the onset of fever.  

Based on these observations, Coley postulated that he could recapitulate such outcomes 

by purposefully injecting sarcoma and carcinoma patients with cultures of Streptococcus 

pyogenes.  In 1893, he published his findings claiming such inoculations resulted in some 

degree of remission up to a curative potential (1).  This seminal experiment in 

manipulating the immune system towards the eradication of cancer has been widely 

regarded as the origin of the cancer immunology field.  However, the concept that the 

immune system could invoke remediation of cancer was resisted with much skepticism 

for several decades following Coley’s work (2). 

During the late 1950s and early 60s, the Laboratories of Robert Baldwin & Karl 

Hellström contemporaneously published several key experiments which reinvigorated 

the notion that the immune system was involved in cancer defense.  Baldwin induced 

primary sarcomas in rats with methylcholanthrene, which were then removed via 

ischemia mediated atrophy.  Subsequently, Baldwin demonstrated that these rats were 

resistant to a secondary tumor transplantation with syngeneic derived tumors, implying 

that the primary tumor had generated an inoculation in the rat against further tumor 

challenge (3).  The Hellström Laboratory further established that previously tumor 

challenged mice were also resistant to a secondary transplantation of autologously 
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derived tumors, confirming that the anti-cancer immunity observed in these experiments 

was not a result of any unappreciated immunogenicity from donor derived tumors (4).  

Later on in the 1960s, reports demonstrated that tumors in rats and mice could be 

suppressed by the transfer of peripheral lymphocytes derived from tumor challenged 

donor mice (5,6), thus establishing that anti-cancer immunity could be “adoptively 

transferred” from one host to another.  

Moving the field beyond controlling cancer through the use of peripheral 

lymphocytes, in 1986, Steven Rosenberg and colleagues successfully isolated 

lymphocytes embedded within the microenvironments of established murine sarcoma 

and adenocarcinoma tumors through mechanical dissociation of the tumor alongside 

elevated levels (1,000U/mL) of interleukin-2 (IL-2).  Adoptive transfer of these isolated 

“tumor infiltrating lymphocytes” (TILs) was able to control the tumor burden of tumor 

challenged mice at a potency of “50 to 100 times” higher than peripherally-derived 

“lymphokine-activated killer cells” (7).  The following year, the Rosenberg Laboratory 

successfully isolated human TILs from the tumor resections of metastatic melanoma 

patients.  Furthermore, these TILs were found to be capable of in vitro cytotoxicity against 

autologous melanoma cells (8).  Subsequently, pilot clinical trials were initiated to 

adoptively transfer these patient autologous TILs into patients with metastatic 

melanoma, as well as into patients with breast, colon, and renal cell carcinomas, which 

demonstrated an overall manageable safety profile and resulted in some cases of partial 

response (9,10).  Most of the initial clinical trials of TIL therapy were purposed to treat 

metastatic melanoma where it was collectively observed that approximately one-third of 
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patients achieved an objective response when TILs were administered alongside high-

dose IL-2 therapy (11), demonstrating the adoptive transfer of TILs to be a feasible and 

potentially efficacious treatment option. 

Since these pilot trials, one of the key advancements in the efficacy of TIL based 

adoptive cell transfer (ACT) therapy has been the ability to preemptively condition the 

patient with a non-myeloablative lymphodepleting regimen prior to cell infusion, typically 

with the chemotherapeutic agents cyclophosphamide and fludarabine (12).  There are 

multiple mechanisms by which lymphodepletion is thought to enhance ACT.  As early as 

1980, it was postulated that lymphodepletion thwarted host endogenous suppressor cells 

from restricting the efficacy of transferred effector T cells (13).  Indeed, such suppressor 

cells are an impediment for ACT.  In mice, Mac-1+/Gr-1+ myeloid derived suppressor cells 

have been shown to directly cause cell-death in effector CD8+ T cells (14), and in humans, 

peripheral derived myeloid cells can suppress T cell proliferation (15).  Additionally, the 

level of host endogenous CD4+FoxP3+ T regulatory cells (Tregs) inversely correlates with 

the therapeutic outcome of ACT (16).  Lymphodepletion prior to adoptive transfer has 

also been shown to make available homeostatic cytokines such as IL-7 and IL-15 both in 

mice and in humans (17,18).  Lastly, lymphodepletion is thought to aid in activating the 

innate and antigen presenting compartments of the immune system.  Lymphodepletion 

regimens likely cause some tumor cytotoxicity releasing tumor antigens.  Moreover, in 

experimental mouse models, lymphodepletion via total body irradiation (TBI) has been 

shown to modulate gut microbiota to release LPS, subsequently enhancing dendritic cell 

activation (19). Attempts have also been made to intensify host lymphodepletion with 
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the addition of TBI to the cyclophosphamide and fludarabine regimen.  An initial small-

scale, non-randomized clinical trial demonstrated a complete response rate of 40% for 

those receiving the highest dosage of TBI (12 Gy) (20) with all but one of those patients 

maintaining the complete response beyond 5 years (21).  However, a subsequent 

randomized clinical trial did not find any significant survival benefit with the addition of 

TBI to cyclophosphamide and fludarabine (22). 

Beyond melanoma, TILs have been detected, and are good prognostic indicator, 

in renal cell carcinoma (23), head and neck squamous cell carcinoma (24,25), 

hepatocellular carcinoma (26), as well as in breast (27,28), gallbladder (29), bladder 

(30,31), ovarian (32–34), esophageal (35,36), colorectal (37–42), prostate (43,44), non-

small cell lung (45,46), pancreatic (47), and cervical (48,49) cancers.  In the clinic, TILs have 

produced positive clinical outcomes in viral associated cancers such as EBV positive 

nasopharyngeal carcinoma (50–52) and have demonstrated partial and complete 

responses in HPV positive cervical cancer (53).  Additionally, TIL based ACT has been 

shown to mediate partial responses in glioma (54), and significantly enhance the 3 year 

survival in clinical trials for non-small cell lung cancer (55) and ovarian cancer (56). 

 

Adoptive Transfer with TCR Transduced T cells 

The use of TILs for ACT is limited by the ability of a patient surgical resection to 

yield TILs suitable for infusion with only approximately 45% of metastatic melanoma 

patients being appropriate candidates for the therapy (20).  Moreover, the repertoire of 

antigen specificities, and affinities thereof, is limited to the inventory of TIL clonotypes 
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present within the harvested tumor.  As an alternative approach, the T cell receptor (TCR) 

genes from tumor reactive TILs have been cloned and then transduced onto autologous 

peripheral T cells (57).  Most TCRs are composed of an α-chain/Β-chain heterodimer (with 

a minority of TCRs expressing γδ chains) (58).  Each unique TCR recognizes a specific 

peptide antigen fragment presented on a major histocompatibility complex (MHC) 

molecule.  There are two main classes of MHC molecules: MHC-I on the surface of virtually 

all nucleated cells, and MHC-II which is generally restrained to antigen presenting cells.  

MHC-I presents antigen to CD8+ T cells while MHC-II presents to CD4+ T cells.  As MHC 

molecules are polymorphic, differing in the specific structural conformation of the groove 

binding the peptide, TCR recognition of a peptide is “MHC restricted” to the particular 

genetic variant of MHC presenting the peptide (59,60).  In the context of melanoma, 

several TCRs specific for melanocyte differentiation antigens such as Melan-A (MART) 

(57,61–63), glycoprotein 100 (gp100) (64–66), and tyrosinase (67–70) have been cloned 

for transduction onto autologous T cells.   

These melanocyte differentiation antigens are overexpressed on melanoma 

tumors, yet are still expressed in healthy melanocytes, which can in some instances 

potentiate the occurrence of autoimmunity (62).  Alternatively, TCRs have been 

engineered on T cells to recognize another class of antigen: the cancer-testis (CT) antigen.  

CT antigens are a class of antigen of which expression is generally exclusive to male 

germline cells, normally absent from healthy adult somatic tissues, but can reappear 

during oncogenesis in various cancers (71).  T cells transduced with a TCR directed against 

the CT antigen NY-ESO-1 and MAGE-3 were able to mount in vitro cytolytic lysis against 
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relevant antigen expressing melanoma and nonmelanoma cancers including 

neuroblastoma and non-small cell lung cancer, respectively (72,73).  In the clinic, the NY-

ESO-1 TCR has mediated objective responses against synovial cell sarcoma and melanoma 

(74) and has also shown clinical activity against multiple myeloma (75).  Currently, the use 

of the NY-ESO-1 TCR is being expanded in clinical trials for breast, lung, esophageal, 

ovarian, and bladder cancers as well as neuroblastoma (76).  Additionally, the MAGE-3 

TCR elicited cancer regression in the clinic against melanoma and synovial sarcoma, 

though further use was discontinued due to the occurrence of fatal on-target off-tumor 

toxicity (77).  

Achieving the appropriate TCR affinity for a target antigen remains an open 

avenue of optimization.  The affinities of TCRs cloned from TILs targeting tumor associated 

antigens, which are co-expressed on non-malignant cells, are likely constrained by central 

tolerance (78,79).  Moreover, limitation in antigen expression caused by tumor immune 

evasion maneuvers, such as the downregulation of MHC molecules (80), likely 

necessitates an appropriately high enough TCR affinity for optimal TCR-pMHC binding 

essential for T cell activation (81).  In the original pilot trial of TCR engineered cells for ACT 

in 2006, 15 melanoma patients were treated with autologous peripheral lymphocytes 

transduced with a TCR specific for MART-1.  Compared to TIL based therapy, the response 

was relatively low with only two (13%) of the patients exhibiting an objective response to 

the treatment (82).  A subsequent trial was reported in Johnson, et al. where transferred 

T cells were transduced with a TCR of a higher affinity for MART-1 which resulted in an 

elevation in the objective response rate to approximately 30% (62).  
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This increase in efficacy highlights the importance of generating TCRs with an 

appropriately high affinity for the target antigen.  However, several preclinical studies 

have demonstrated that there is likely an upper-limit to the increase in anti-tumor efficacy 

with enhanced TCR affinity.  Dougan, et al. generated two different strains of transnuclear 

mice with T cells expressing either a high or low affinity TCR for the melanoma antigen 

tyrosinase-related protein 1 (TRP-1) using somatic cell nuclear transfer technology.  The 

difference in affinity for TRP-1 between the two TCRs was nearly 100-fold, yet when these 

T cells were activated ex vivo and transferred into B16 challenged mice, both strains 

conferred a survival benefit and control of tumor burden that was indistinguishable in 

magnitude between the low and high affinity TCR (83).  Other investigators have used a 

panel of increasing TCR affinities for the same antigen to more precisely determine the 

relationship between affinity and in vivo anti-tumor efficacy.  Zhong, et al. used a panel 

of TCRs with increasing affinity towards gp100 and found that increasing the affinity 

towards gp100 did enhance anti-tumor efficacy, but this enhancement was plateaued at 

a TCR affinity of 10µM (84).  A similar plateau was seen with a panel of increasing TCR 

affinities for NY-ESO-1 (85).  Another study generated TCR affinities for NY-ESO-1 beyond 

the physiological range, which resulted in diminished T cell functionality (86).  One 

potential explanation for this phenomenon is the increased expression of SHP-1, an 

inhibitor of TCR signaling (87), alongside increasing TCR affinity (88), implicating an 

intrinsic negative feedback mechanism against such supraphysiologic TCR stimulation.  

Moreover, it has been reported that T cells with higher affinity TCRs are more susceptible 

to tolerization within the tumor microenvironment (89).  Enhancements in affinity also 
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increase the likelihood of autoimmune complications with therapy, particularly with TCRs 

that target antigens co-expressed on non-malignant tissues.  As such, the T cells 

transduced with the higher affinity anti-MART1 TCR also targeted MART-1 expressing 

melanocytes in the skin, eyes, and ears resulting in the development of vitiligo and 

transient onsets of uveitis and hearing loss (62).  In the context of tumor associated 

antigens shared between healthy and tumor cells, lowering the antigen affinity allows for 

preferential targeting of tumor cells as they significantly overexpress the antigen 

compared to normal healthy tissues (90,91).  Additionally, more severe on-target off-

tumor side effects have been observed with the use of TCR transduced T cells.  A pilot 

clinical trial utilizing a TCR recognizing the CT carcinoembryonic antigen to treat 

gastrointestinal cancers had to be halted because all of the treated patients developed 

severe inflammatory colitis (92).  More drastically, in the clinical trial utilizing the TCR 

directed against the CT antigen MAGE-A3, two patients died as a result of treatment 

induced neurotoxicity, as it was later determined that MAGE-A12, also recognized by the 

TCR, was previously unappreciated to be expressed in the brain (77).  Another clinical trial 

with MAGE-A3 TCR transduced cells resulted in fatal cardiac toxicity potentially caused by 

a cross-reactive epitope on the striated muscle protein Titin (93).  Altogether, the 

technology to engineer autologous T cells with a tumor-antigen specific TCR represents a 

feasible treatment option for cancer.  However, there remains a disparity in the treatment 

efficacy compared to TIL therapy, and further enhancements are needed to fine-tune 

appropriate antigen specificities and affinities that are both efficacious and safe.  
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One approach to the generation of appropriate TCRs for transduction is to use 

whole exome sequencing to identify nonsynonymous mutations between healthy and 

malignant tissues which are subsequently screened for TIL recognition (94,95).  The 

rationale for this approach builds off of the success of anti-PD1 therapy, which reports 

have suggested is mediated by T cells recognizing mutated antigens (96).  Additionally, 

some reports have associated mutation specific TILs with positive outcomes in ACT 

(97,98), and T cells transduced with a KRAS-mutant specific TCR have shown efficacy in a 

preclinical pancreatic cancer model  (99).  Furthermore, this approach could potentially 

expedite the application of ACT immunotherapy towards cancers with lower mutation 

rates than melanoma (100), such as the clinically observed regression in a bile duct cancer 

patient treated with an ERBB2IP-mutation specific TIL (101). 

 

Chimeric Antigen Receptor Engineered T Cells 

An alternative approach to the transduction of T cells with a conventional αβ TCR 

is to transduce cells with a Chimeric Antigen Receptor (or CAR).  CAR T cells, originally 

described by Gross and colleagues in 1989, are a fusion protein combining the antigen 

binding domain of an antibody with the intracellular signaling domain of a T cell (102).  

The use of an antibody antigen binding domain allows the CAR T cell to be MHC 

independent as well as able to bind to non-protein epitopes.  Original CARs simply 

contained the CD3ζ domain of the TCR signaling complex and were lackluster in their 

clinical efficacy due to poor persistence (103,104).  Subsequently, co-stimulatory 
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domains, such as CD28 or 4-1BB have been added, which have markedly improved both 

the persistence and therapeutic efficacy of CAR T cells (105,106).   

CAR T cells have been primarily beneficial in the treatment of hematological 

cancers targeting the B-cell antigen CD19 where they have demonstrated an over 50% 

response rate in chronic B-cell leukemia (107) and complete response rates upwards of 

90% in patients with acute lymphoblastic leukemia (108).  Though currently the efficient 

use of CAR T cells has been restrained to hematological cancers, many investigators are 

looking at ways to target solid tumors with CAR engineered T cells.  To that end, many 

CARs have been developed targeting relevant antigens, and have shown preclinical 

efficacy, in breast cancer (109–111), gastrointestinal cancers (112–114), glioblastoma 

(115–119), lung cancer (120,121), neuroblastoma (122,123), pancreatic cancer (124–

126), osteosarcoma (127,128), ovarian cancer (103,129,130), cervical cancer (131), 

prostate cancer (132–135), renal cell carcinoma (136,137), and hepatocellular carcinoma 

(138,139).  Though success in the clinic has remained more elusive, several small-scale 

clinical trials have demonstrated partial responses in patients with non-small cell lung 

cancer using anti-EGFR CAR T cells (120) and in prostate cancer with anti-PSMA CAR T cells  

(133).  Additionally, there have been reports of complete responses in glioblastoma with 

an anti-IL13Rα2 CAR T cell (140) and in neuroblastoma with an anti-GD2 CAR T cell (122).  

However, other pilot clinical trials utilizing T cells transduced with CARs directed against 

solid tumors have demonstrated severe (92,137,141)  and even fatal (142) toxic events.  

Unfortunately this has slowed down the clinical development of CAR engineered T cells 
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against solid tumors towards stringent dose-escalation trials, which have made it difficult 

to discern clinical efficacy (143).   

To limit toxicities, investigators are currently working to engineer CARs with 

additional safety modifications.  These approaches include incorporation of suicide genes 

such as Herpes simplex virus thymidine kinase or inducible caspase 9  which can be 

induced by either treatment with ganciclovir or the dimerization agent AP1903, 

respectively, to purposely eliminate transferred cells in order to modulate any escalation 

of on-target off-tumor toxicities (144,145).  Alternatively, the CAR can be engineered to 

co-express a cell surface epitope that can be recognized by an already approved 

monoclonal antibody therapy such as rituximab or cetuximab, resulting in CAR T cell 

deletion (146,147). Conversely, the CARs may be inducible themselves, being only 

activated when given an exogenous peptide or small-molecule drug (148–150). 

Furthermore, the specificity of CARs can be enhanced by creating bi-specific “tandem” 

CARs whereby two antigens must be present on a cell to trigger CAR effector function 

(151,152).   

 

Correlatives of Success with Adoptive Transfer Therapy 

Unfortunately, reports of clinical success with adoptive cell transfer therapy must 

be balanced by the fact that the majority of patients do not generate a durable complete 

response.  Understanding key correlatives of success and failure between responding and 

non-responding patients is therefore important for bridging this gap in therapeutic 

efficacy.  Certain host factors can influence therapeutic success such as the individual 
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tumor’s ability to evade immune detection via downregulation of MHC molecules (80).  

Similarly, development of resistance to CART19 therapy can be driven by either the 

mutation or loss of expression of CD19 (153,154).  However, overall, there has not been 

a correlation between bulk of disease and/or the nature of metastasis with the 

therapeutic success of ACT (155). 

Rather, the quality of the T cell used for infusion seems to be of paramount 

importance to therapeutic success.  Both the age and differentiation status of the cell 

have been shown to correlate with clinical outcomes.  In general, younger, less-

differentiated cells consistently demonstrate superiority in therapeutic efficacy.  A mouse 

study, which adoptively transferred cells stratified at different effector stages (naïve, early 

effector, immediate effector, effector) demonstrated an inverse correlation with 

differentiation status and ability to control tumor (156).  This observation has also been 

extended to murine TCR transduced naïve cells being more anti-tumor efficacious than 

more differentiated memory cells (157).  In fact, it has recently been shown that even the 

presence of memory cells during culture expansion can impair the anti-tumor efficacy of 

naïve cells (158).  As such, there have been several attempts in the clinic to use shorter 

cultured “young” TILs, of which pilot studies have shown promising improvement in 

efficacy (159,160).   

Consistently, telomeres, which degrade during cell-replication, and are therefore 

indicative of a cell’s replication history, have also been shown to correlate with 

therapeutic outcomes.  Patients receiving TILs with longer telomeres (i.e. have been 

through less replications) are significantly more likely to respond to therapy than patients 
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receiving TILs with shorter telomeres (18,161,162).  Moreover, expression of 

costimulatory molecules also correlates with improved outcomes.  Higher expression 

levels of CD27 (163), CD28 (162), and 4-1BB (164) associate with enhanced anti-tumor 

efficacy in preclinical and clinical studies.  Additionally, as older, more differentiated cells 

are susceptible to senescence, and also lack the durability and proliferative capacity of 

younger, less differentiated cells (165), lack of cell persistence after transfer has also been 

shown to correlate with poor patient outcomes (166). 

The quantity of cells infused is also important as studies have shown that 

responding patients receive a significantly higher number of cells than comparable non-

responding patients. (159,167).  In order to achieve enough cells for treatment, both TILs 

and TCR transduced cells undergo a Rapid Expansion Protocol (REP) whereby cells are 

typically stimulated polyclonally by anti-CD3 cross-linked on irradiated feeder cells with 

continued supplementation of IL-2 (168).  However, counterproductively, cells that have 

undergone a REP have decreased expression of CD28 and CD27 (156,169).  Additionally, 

post-REP cells have decreased telomere lengths compared to pre-REP cells (170).  They 

are also more susceptible to deletion by activation-induced cell death (171). Thus, 

counter-acting the terminal differentiation promoting influence of the REP is likely a 

critical therapeutic intervention point to improve the quality and therapeutic efficacy of 

expanded anti-melanoma T cells. 

 

 

 



www.manaraa.com

14 

Melanoma 

The cancer of melanoma has been in the forefront of progress in cancer 

immunotherapy as it is notably one of the most immunogenic of cancers, likely due to its 

high mutation rate producing neoantigens (100).  Several key observations have 

supported melanoma as a vanguard for the immunotherapy field.  There are extremely 

rare cases where metastatic melanoma has spontaneously regressed without an 

attributable therapeutic cause (172–174).  Incidences of melanoma are higher, and the 

prognosis is poorer, amongst immunocompromised individuals such as HIV patients or 

organ transplant recipients (175–177).  Conversely, onset of the autoimmune condition 

vitiligo correlates with better outcomes for metastatic disease (178,179). The success 

gained by IL-2 therapy demonstrates that actively stimulating the immune system can 

modulate cancer regression.  Moreover, the discovery of lymphocytes which have 

penetrated the tumor microenvironment evidences the direct targeting of melanoma 

cancer cells by cytotoxic T cells (8,180,181).   

While the incidence rates of most cancers are on the decline in the United States, 

melanoma is one of a few cancers increasing in both occurrence and mortality in the US, 

and is one of the fastest growing cancers worldwide (182).  Over the past two decades, 

the rate of people diagnosed with melanoma has increased 3.1% per year with an 

estimated 17-fold and 9-fold increase in incidence rates for men and women, 

respectively, within the US since the 1960s (183,184).  Concurrently, since the 1960s, the 

mortality rate due to metastatic melanoma has been progressively increasing by 2%  each  

year (183).  In 2014, there were an estimated 76,100 new cases of melanoma in the US 
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with 1,350 of those cases occurring in South Carolina.  Moreover, in 2014, it is estimated 

that there were 9,710 deaths attributed to melanoma (185).  At this current incidence 

rate, it is now projected in the US, that men have a 1-in-33 chance and women have a 1-

in-52 chance of developing melanoma within their lifetime (186). 

The overall prognosis for melanoma is fairly encouraging with 5 and 10 year 

survival rates of 92% and 89%, respectively (187).  However, these data are heavily 

weighted towards approximately 84% of melanomas being diagnosed at an early stage of 

development (187). Once the stage of initial detection is considered, the prognosis of 

melanoma is highly dichotomous based on when it is initially diagnosed.  Melanomas 

detected while they are ≤1 mm in thickness, and have not metastasized, have a very high 

cure rate via surgical resection with 5 year and 10 year survival rates of 97% and 93%, 

respectively (188).   However, once the primary melanoma tumor has grown to a depth 

of 4 mm, even before the detection of metastatic nodes, the 10 year survival rate of Stage 

IIC cancer quickly diminishes to 39% (188).  For nearly one-in-five melanoma patients 

(20.5%), the cancer will metastasize into Stage IV disease (188) where the prognosis is 

exceedingly grim with a 5 year survival rate of only 15.2% (189). 

 

Oncogenesis of Melanoma 

Melanoma is a cancer originating from the melanocyte cell.  The overwhelming 

majority of melanoma cases are cutaneous (~91.2%) with the additional rarer forms 

occurring as ocular and mucous membrane melanomas (190).  Melanocytes, the pigment 

producing cells of skin and hair follicles, continually regenerate throughout an individual’s 
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lifetime potentially making them more malleable to carcinogenic transformation (191).  

Melanomas typically arise from a cluster of melanocytes known as a nevus (or commonly 

referred to as a “mole”).  The overwhelming majority of nevi are benign and do not 

progress to melanoma.  However, genetic damage causes a rare minority of nevi to 

become dysplastic and progress into radial growth in the epidermis (192). The majority of 

melanomas present with mutations in either the N-RAS or BRAF cell proliferation 

pathways (192,193).  The most prevalent mutation is in BRAF, estimated to occur in 

upwards of 66% of malignant melanoma cases (194) commonly presenting as a Valine-

Glutamic Acid substitution at residue 600 (BRAFV600E).  This substitution causes an 

approximately 700-fold increase in B-raf kinase activity, resulting in constitutive activation 

of the Ras-Raf-MEK-ERK pathway promoting inappropriate cell proliferation (195,196). 

In melanoma, as in most cancers, enhanced proliferation is generally coupled with 

loss of cell cycle control mechanisms.  Typically, melanomas have been reported to thwart 

proper cell cycle control by either inactivating the CDKN2A or PTEN genes.  Loss of 

function for the CDKN2A gene leads to a deficiency in the cell cycle regulator p16INK4a 

loosening restrictions on cell cycle progression (197).  Similarly, mutations inactivating 

PTEN allow levels of PIP3 to increase permitting an unregulated increase of activated Akt, 

promoting cell survival and proliferation (198).   

After sufficient radial progression, melanomas begin to grow vertically and burrow 

through dermal layers.  Loss of functional PTEN leads to a switch from E-cadherin to N-

cadherin expression on the surface of melanoma cells (199).  Loss of E-cadherin 

expression, which restrains melanoma proliferation via cell-to-cell contact with adjacent 
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keratinocytes, allows more migratory freedom for the expanding tumor mass (200–202). 

Additionally, as melanomas become more aggressive, they begin to express the αvβ3 

integrin which secrets the active form of metalloproteinase MMP-2.  MMP-2 is an enzyme 

that actively degrades collagen in the basement membrane eventually creating a path to 

metastasis for the evolving tumor (203).  

 

Melanoma Treatment Options 

For Stage I melanomas, the cancer can generally be cured via surgery, with a 5 

year survival rate of approximately 98% (187).  Unfortunately, once melanoma has 

metastasized into a Stage III–IV cancer, treatment options are more limited in their 

efficacy.   

 

Chemotherapy 

In the 1970s, the chemotherapeutic agent Dacarbazine emerged as one of the first 

approved therapeutic options for late stage melanoma and has represented the mainline 

standard-of-care since then.  Preclinical studies demonstrated that Dacarbazine exhibited 

an in vivo antitumor effect against the leukemic cell line L1210 (204) as well as murine 

sarcoma, adenocarcinoma, and melanoma tumors (205,206).   

Initial clinical trials administered Dacarbazine as an oral agent, which 

demonstrated incomplete and inconsistent absorption (207).  Dacarbazine itself does not 

have anti-neoplastic activity.  It must be first metabolized to the reactive byproduct 5-[3-

methyl-triazen-1-yl]-imidazole-4-carboxamide (MTIC) in the liver via the cytochrome 
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P450 (208).  The drug was henceforth administered intravenously.  Phase III trials 

demonstrated a partial response rate of 14.8% and a complete response rate of 4.1% 

(209).  However, these responses were not durable as 64.2% of complete responders 

relapsed within 37 weeks of treatment, and overall, only 1.4% of the original patient 

cohort was disease free at 74 months (209).   

In the early 1990s, Temozolomide emerged in phase I trials as oral alternative to 

Dacarbazine (210,211).  The drug demonstrates a near 100% bioavailability when 

administered orally and is capable of spontaneous conversion to the active agent MTIC 

without need of hepatic metabolism (210,212).  While Temozolomide is more convenient 

to administer, it has unfortunately not demonstrated any significant improvement in 

therapeutic efficacy compared to Dacarbazine (213) with the exception that it can 

potentially cross the blood-brain barrier in the treatment of central nervous system 

metastases (212,214,215).   

Dacarbazine and Temozolomide are generally regarded to have a manageable side 

effect profile (216).  However, these agents have only produced a median overall survival 

of 5.6-7.8 months (217) and are likely, at best, only a palliative care option.  Since the 

development of Dacarbazine, there have been many attempts and trials to combine 

various chemotherapeutic agents, including the often investigated “Dartmouth Regimen” 

of Dacarbazine alongside cisplatin and vinblastine.  However, none of these have offered 

a serious advantage to life extension compared to Dacarbazine alone (218).  Altogether, 

chemotherapeutics have not demonstrated any convincing potential as a curative agent 

for metastatic melanoma (219).   
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High Dose Interleukin-2 

 Since Dacarbazine, no drug or agent demonstrated any significant improvement 

in outcomes for metastatic melanoma patients until the FDA approval of high-dose 

Interleukin-2 (IL-2) in 1998 (220,221). IL-2 was originally discovered as a “T cell Growth 

Factor” in 1976 capable of stimulating in vitro lymphocyte proliferation (222).  Thus, 

treatment with IL-2 exhibited the potential of manipulating the immune system towards 

tumor eradication (223). Treatment with high-dose IL-2 yields an objective response rate 

of approximately 16% with a subset of complete responders of around 6% (224).  

Moreover, nearly 70% of these complete responders never relapse (219), which made IL-

2 a breakthrough in the durable management of metastatic melanoma.  However, high-

dose IL-2 treatment results in a complex side effect profile often requiring hospitalization 

for treatment.  Consequently, current analysis reveals, at best, only 10% of eligible 

patients participate in this potentially curative treatment (219). 

 

Interferon-α 

 The in vivo administration of interferon-α (IFN-α) has been characterized to 

bolster the immune system towards an anti-tumor response through several 

mechanisms.  IFN-α promotes the maturation, and enhances the antigen presenting and 

co-stimulatory functionality, of dendritic cells (225,226).  Additionally, IFN-α increases the 

Th1 immune response by increasing IFN-γ secretion by T cells (227), which is critical for 

the anti-tumor priming of T cells as well as promoting the upregulation of MHC expression 

(228) and oncogene induced senescence in melanoma cells (229).  Ultimately, in vivo 
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tumor regression by IFN-α involves increased infiltration of dendritic cells and T cells into 

the tumor microenvironment (230). 

Administration of IFN-α has not been very effectual for the eradication of 

unresected melanoma.  Clinical trials which have attempted to combine IFN-α with 

various chemotherapeutic regimens were not able to show any increase in overall survival 

benefit from the addition of IFN-α (231–234).  However, the use of high-dose IFN-α 

(specifically IFN-α2b) as an adjuvant therapy, to prevent relapse following surgical 

resection, has been shown to improve both the progression free survival and overall 

survival in patients with high-risk melanoma (235–238).  Therefore, use of IFN-α2b in the 

adjuvant setting was approved by the FDA in 1995. The pegylated form of IFN-α2b, which 

results in a nearly 10-fold increase in the half-life compared to unmodified IFN-α2b (239), 

has also been developed and has been approved by the FDA for adjuvant treatment of 

melanoma.  However, it is currently unclear if the pegylation has improved the 

therapeutic benefit of IFN-α2b as two phase III trials have showed no improvement in 

overall survival when compared to either observation (240) or unmodified IFN-α (241). 

Additionally, it should be cautioned that a phase III trial of patients with 

“intermediate-risk” melanoma showed that there was no benefit from IFN-α2b adjuvant 

therapy, and patients had a reduced quality of life due to nearly 58% of the treatment 

group experiencing grade 3 or higher toxic side effects (242).  Altogether, IFN-α is likely 

beneficial as an adjuvant therapy for post-resected, high-risk melanoma patients.  

Furthermore, while it has not demonstrated robust clinical efficacy in unresected disease, 

there is a renewed interest to determine if it can enhance the efficacy of immune 
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checkpoint blockade inhibitors.  Clinical trials are currently underway to determine if 

there is any additive or synergistic effect in combining IFN-α with the anti-CTLA-4 agents 

Tremelimumab and Ipilimumab as well as with Pembrolizumab (anti-PD1) (243,244). 

 

Vaccines 

 The immunogenic nature of melanoma has inspired many investigators to 

engineer vaccines that could potentially bolster a patient’s immune system towards 

tumor eradication.  Unfortunately, the overwhelming majority of clinical attempts have 

failed to exhibit a substantive patient response (245).  The earliest vaccine attempts were 

whole cell vaccines utilizing irradiated autologous tumor cells obtained from surgical 

resections.  Clinical trials using whole cell vaccines to treat melanoma have only been able 

to report an overall response rate in the range of approximately 3.85%-12.5% (246–249).  

Additionally, whole cells vaccines derived from allogenic melanoma cell lines have been 

developed (Melacine®, VMCL, VMO) and tested in the clinic for post-surgical adjuvant 

treatment.  None of these have demonstrated an improvement in overall survival (250–

252).  In fact, a phase III trial of the allogenic whole cell vaccine Canvaxin™ had to be 

canceled when it was demonstrated that patients treated with Canvaxin™ had survival 

rates significantly lower than placebo treated controls (253). 

Dendritic cell vaccines have also been used in an attempt to enhance the 

presentation of tumor antigens to the immune system by pulsing dendritic cells with 

melanoma peptides prior to patient infusion.  While this approach has demonstrated 

encouraging results in increasing the overall survival rates in a post-surgical adjuvant 
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setting (254), in the treatment of unresected disease, phase I/II trials have only been able 

to demonstrate a handful of regression events (255–257).  Moreover, a randomized phase 

III trial of dendritic cell vaccine treatment did not demonstrate an increase in efficacy 

when compared to Dacarbazine chemotherapy (258).   

Other vaccines approaches include ganglioside vaccines that attempt to exploit 

the high levels of immunogenic gangliosides on the surface of melanoma cells (259).  

Currently, these have only been investigated within the context of post-surgical adjuvant 

therapy and have not shown any increase in clinical benefit in comparison to either 

observation (260) or INF-α2b therapy (236).  DNA vaccines directly inject the genetic code 

for melanoma antigens either through the use of plasmid DNA or recombinant viral 

vectors. Clinical trials using DNA vaccines have either reported minimal (3.33%) to no 

clinical response (261,262) or were unable to distinguish a definitive benefit in contrast 

to IL-2 co-treatment (263,264).  However, another viral vaccination approach, the 

oncolytic virus T-VEC (Talimogene Laherparepvec, formerly OncoVexGM-CSF) has shown 

clinical benefit.  T-VEC is a herpes simplex virus type 1 (HSV-1) which has been modified 

for enhanced targeting of tumors for replication and lysis (265) as well as to secrete 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (266).  In a phase III clinical 

trial, T-VEC had a higher overall response rate compared to GM-CSF control (26.4% vs 

5.7%) as well as an improvement in median overall survival (23.3 vs 18.9 months, p=0.51) 

(267).  As such, in 2015, T-VEC (trademarked as IMLYGIC) became the first oncolytic viral 

therapy to be approved by the FDA (268). 
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By far, peptide vaccines, which directly inject the peptides of melanoma antigens, 

have been the most extensively tested in trying to generate an immune response against 

unresected melanoma.  Historically, trials experimenting with various antigen peptides 

(MART-1, TRP-1, TRP-2, gp100, Tyrosinase, MAGE-12, NY-ESO-1) have demonstrated a 

limited overall response rate of approximately 2.9% (245).  One outlier to this trend is a 

phase III trial reporting a higher overall clinical response rate with gp100 peptide vaccine 

and high-dose IL-2 in comparison to IL-2 therapy alone (16% vs 6%) (269).  However, it 

should be noted that the IL-2 alone treatment group grossly underperformed the 

historically observed response rate for high dose IL-2 therapy (~16%) (219,224).  Other 

trials have demonstrated that adding gp100 peptide vaccine did not enhance the benefit 

of high dose IL-2 (270).  Furthermore, peptide vaccine treatments have not been 

improved by the addition of INF-α2b or GM-CSF (271), nor have peptide vaccines 

demonstrated a benefit in a post-surgical adjuvant setting (272).  Altogether, despite 

much effort to use vaccines towards the eradication of unrested melanoma, clinical 

success towards that goal has been minimal and sporadic (273).  Besides T-VEC, the only 

other cancer vaccine to be approved by the FDA is Sipuleucel-T for castration-resistant 

prostate cancer, which has only been able to improve median survival by approximately 

4.1 months (274,275).   

 

B-raf and MEK Targeted Inhibitors 

In 2011, the FDA approved Vemurafenib, which specifically targets and inhibits the 

BRAFV600E mutation (276), as it demonstrated a significantly higher overall response rate 
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compared to Dacarbazine (48% vs 5%) in a phase III clinical trial, with interim analysis 

compelling a recommended crossover from Dacarbazine to Vemurafenib (217).  

Unfortunately, these responses have not demonstrated durability as, in most cases, the 

residual tumor burden develops resistance to the treatment (277) resulting in a 

progression free survival of only approximately 6.2 months (278).  Additionally, by 

definition, this treatment option excludes nearly half of all melanoma patients that do not 

have BRAFV600E mutant tumors (192), and of those that do, the heterogeneity of a 

patient’s melanoma burden may likely contain BRAF-WildType (BRAFWT) cells intermixed 

with mutant cells, unaffected by the treatment (279).  Moreover, Vemurafenib has been 

shown to counterproductively activate MAPK/ERK pathways in BRAFWT cells (280) making 

the development of secondary malignancies, such as the noticeable onset of squamous-

cell carcinoma, a continuing point of concern (217,281). 

Alternatively, inhibitors targeting downstream MEK, such as Trametinib, have 

been developed (282).  Trametinib has shown a modest benefit in overall survival when 

compared to chemotherapy.  However, MEK inhibition did not demonstrate a significant 

improvement in efficacy when compared to previous trials with Vemurafenib, excluding 

the caveat that treatment does not exclude patients with BRAFWT tumors (283).  

Based on the rationale that the principle resistance mechanism of melanoma to 

BRAF targeted therapy is reactivation of the MEK/MAPK pathway (284,285), investigators 

have recently been investigating the combination of BRAF and MEK inhibition.  Initial 

clinical trials demonstrate a promising increase in efficacy compared to single agent 

treatment with the FDA approval of combining Vemurafenib with the MEK inhibitor 
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Cobimetinib (286).  This was based on a phase III clinical trial which showed an overall 

response rate of 68% (versus 45% in the Vemurafenib alone group) with a median 

progression-free survival of 9.9 months (versus 6.2 months for Vemurafenib) (278). 

 

CTLA-4 and PD-1 Immune Checkpoint Inhibitors 

In 2011, Ipilimumab, an antibody targeting the T cell inhibitory receptor CTLA-4, 

was approved for the treatment of late-stage melanoma.  CTLA-4 negatively regulates T 

cell activation and proliferation (287), and impediment of CTLA-4 via a blocking antibody 

has demonstrated pre-clinical in vivo improvement in tumor control as early as 1996 

(288).  Ipilimumab was developed by Keler and colleagues in 2003 as a human monoclonal 

antibody (MDX-010) against CTLA-4 (289).  MDX-010 was later acquired by Bristol Myers 

Squibb and Madarex and subsequently termed Ipilimumab (with the trade name 

“Yervoy”). A phase III trial comparing Ipilimumab to patients receiving a gp100 peptide 

vaccine demonstrated a significant improvement in overall survival (10.1 months versus 

6.4) with 23.5% of Ipilimumab treated patients being alive at 24 months post-treatment 

compared to 13.7% in the vaccine treated group (290).  However, the side effects of 

Ipilimumab treatment were fairly severe as 60% of treated patients developed an 

immune-related adverse event, with 10-15% being a grade 3 or 4 event, and 2.1% 

resulting in a drug related fatality (290).  Retrospective analysis of initial phase II/III trials 

report a 22% three-year survival rate for Ipilimumab treated patients, which was 

improved slightly (26%) for treatment-naïve patients (291).  Beyond melanoma, 
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treatment with Ipilimumab has also shown positive clinical benefit in renal cell carcinoma 

(292), prostate cancer (293), and ovarian cancer (294). 

More recently, the targeting of another T cell inhibitor receptor, PD-1, has 

demonstrated even more encouraging results than Ipilimumab.  In 2015, the anti-PD-1 

antibody, Pembrolizumab, demonstrated a significant enhancement in progression free 

survival compared to Ipilimumab (47.3% versus 26.5%) (295).  In 2016, another clinical 

trial demonstrated an overall objective response rate of 33% (296).  These results led 

Pembrolizumab to be approved the same year as a first-line treatment option for BRAFWT 

melanomas.  Additionally, another anti-PD-1 antibody, Nivolumab, has also demonstrated 

objective responses in the clinic for melanoma with a 30.8% increase in overall one-year 

survival and a 26.1% increase in the objective response in melanoma patients (BRAFWT) 

compared to Dacarbazine (297), and has also shown clinical benefit for non-small-cell lung 

cancer, prostate cancer, and renal cell cancer (297–304).  Nivolumab has also been shown 

to be a successful secondary treatment when Ipilimumab has failed (298).  Moreover, in 

addition to being more effective than Ipilimumab therapy, both Pembrolizumab and 

Nivolumab were generally well tolerated without demonstrating the safety concerns 

associated with Ipilimumab (305). 

Being that the inhibitory receptors CTLA-4 and PD-1 are relevant at different 

stages in the cytotoxic T cell response, with CTLA-4 interfering in initial activation and PD-

1 being engaged by PD-L1 in the tumor microenvironment, it has been postulated that 

combining anti-CTLA-4 and anti-PD1 therapies may result in an even greater therapeutic 

optimization.  Indeed, the combination of Nivolumab with Ipilimumab resulted in a 
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significantly higher objective response rate than Ipilimumab alone (61% vs 11%) (306).  

Moreover, while none of the Ipilimumab-alone cohort exhibited a complete response, 

22% of those receiving the combination therapy had a complete response (306). A 2016 

follow-up study of that trial and another phase III trial found that patients treated with 

the combination therapy had a 10.2% higher 2-year survival rate that patients treated 

with Ipilimumab alone (63.8% vs 53.6%) (307).   Additionally, in a separate study, the 

combination of Nivolumab plus Ipilimumab resulted in an enhancement of progression 

free survival compared to either single agent therapy (11.5 months for combination 

therapy, 6.9 months for Nivolumab, 2.9 months for Ipilimumab) (308). 

 

Emerging Combination Therapies 

 Several studies have shown that BRAF inhibitors can produce an 

immunomodulatory effect in the context of melanoma.  The BRAFV600E mutation has been 

reported to interfere with MHC-1 antigen processing (309), and conversely, BRAFV600E 

inhibitors have been shown to enhance antigen presentation by melanoma cells (310).  

Moreover, BRAF inhibition does not appear to interfere with lymphocyte function (311) 

and some studies have suggested BRAF inhibition even enhances T cell activation (312).  

Consequently, BRAF inhibition also demonstrates enhanced tumor infiltration by T cells 

(313).  In addition to promoting T cell activation, BRAF inhibition, conversely, decreases 

production of immunosuppressive factors such as IL-10, VEGF, and IL-6 by melanoma cells 

(314).   
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Based on these observations, the rationale has been put forth to combine 

BRAFV600E inhibition with an immune checkpoint inhibitor.  A pre-clinical study has shown 

that the combination of BRAF inhibition and PD-1 blockade produces a more durable anti-

tumor response than either single agent alone (315).  Currently, several trials are 

investigating the combination of targeted inhibitors with immune checkpoint blockade. 

An initial trial was limited by toxicity (316), and other trials are ongoing though have not 

been yet able to show data (317). 

 

Immunotherapy Models for Melanoma 

This thesis project has employed several models to determine how the 

administration of N-acetyl cysteine can modulate the phenotype and anti-tumor 

functionality of melanoma-specific T cells.  As demonstration of the enhancement of in 

vivo efficacy was the overarching intent of these studies, two models were used to treat 

C57BL/6 wild-type mice challenged with B16-F10 murine melanoma tumors.  One model, 

utilized Pmel-1 transgenic T cells to represent therapeutic T cells with native TCRs, while 

the other model transduced peripheral T cells with a TRP-1 specific TCR to demonstrate 

experimental modulation of engineered T cells.  Additionally, to determine the effect of 

N-acetyl cysteine on human therapeutic cells, patient autologous T cells transduced with 

the TIL1383I TCR were obtained from patients undergoing a melanoma clinical trial 

alongside samples obtained from healthy donors. 
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The Pmel-1 Model 

 The repertoire of antigens available from any tumor is highly composed of non-

mutated, self-antigens, which present a significantly high hurdle of poor immunogenicity 

that the immune system must overcome for an effective anti-tumor response.  Therefore, 

effective in vivo models must adequately represent this handicap for optimal translational 

relevance, which is lacking from models which utilize foreign antigens as targets.   

The murine B16 melanoma cell line has been regarded as an exceptionally “poorly 

immunogenic” tumor cell as it expresses no surface MHC-II and very little MHC-I 

(318,319).  In 1997, one of the murine self-antigens expressed by B16 melanoma cells, 

gp100 (or PMEL17), was cloned (320).  Gp100 is indeed a self-antigen as it is involved in 

the maturation of melanosomes, the pigment producing organelle in healthy melanocytes 

(321).  The following year, Willem Overwijk and colleagues immunized mice with human 

gp100 (as murine gp100 did not elicit a proper immune response) and generated T cell 

“clone 9.”   This clonotype faithfully recognized and killed B16 melanomas cells implanted 

into mice in vivo (322).  In 2003, the same research group, using the RNA isolated from 

“clone 9” generated transgenic mice expressed this MHC-1 restricted gp100 specific TCR 

named the Pmel-1 mouse (323).  Greater than 95% of the CD8+ cells from generated 

transgenic mice expressed Vβ13, the specific TCR-β chain inserted into the transgene.  

However, despite the overwhelming presence of anti-gp100 specific T cells, these mice 

were just as vulnerable to a B16 melanoma challenge as wild-type C57BL/6 mice.  

However, isolated splenocytes from these Pmel-1 mice adoptively transferred alongside 

gp100 peptide stimulation and IL-2 effectively controlled the tumors in B16 challenged 
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C57BL/6 wild type mice.  Thus, the Pmel-1 transgenic mouse does provide T cells with 

TCRs which recognize murine gp100 on B16 melanoma cells and mounts a cytolytic 

response in vivo which can serve as a platform to model the adoptive transfer of T cells 

with native bearing antigen specific TCRs.  However, these cells must be activated via 

stimulation with the altered peptide ligand of the human homologue of gp100 for 

optimum anti-tumor efficacy (322), which does not completely parallel adoptive transfer 

protocols in the clinic.  

 

Transduced TRP-1 TCR Model 

To model the use of TCR engineered cells in the clinic, this thesis project utilized 

an institutionally available cellular transduction core to transduce wild type C57BL/6 

mouse splenocytes with a TCR specific for the melanoma associated antigen tyrosinase-

related protein-1 (TRP-1)  (324).   TRP-1 is another self/tumor antigen which functions in 

healthy melanocytes to stabilize tyrosinase activity and likely protects against oxidative 

stress in the process of melanogenesis (325).  TRP-1 specific T cells, derived either from a 

native-TCR expressing transgenic mouse or from the transduction of a TRP-1 specific TCR, 

do mediate control of B16 tumors in vivo, and in contrast to the Pmel-1 model, do not 

require peptide stimulation prior to transfer to elicit anti-tumor functionality  (324,326). 

 

Human TIL1383I TCR Transduced Cells 

For the most expeditious determination of the clinical relevance for the findings 

in this thesis project, T cells transduced with the therapeutic TIL1383I TCR currently being 
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generated as part of a phase I clinical trial (NCT01586403) were obtained for experimental 

use.  The generation of these cells began when TILs from “patient 1383” (327) were 

cultured and tested for reactivity, demonstrating that culture “TIL 1383 I” was specifically 

reactive against HLA-A2 expressing melanoma cells yet was not reactive against  non-HLA-

A2 and/or non-melanoma tumor cells (328).  Subsequently, the cognate antigen targeted 

by this TIL culture was determined to be the 368-376 peptide epitope of tyrosinase 

(hTyr368-376) of either the 370D genetically encoded or the 370N post-translationally 

modified variation (328,329).   

Originally discovered in CD4+ cells (328), the TIL1383I TCR has a high enough 

affinity for hTyr368-376 that it can elicit recognition of the HLA-A2 presented peptide 

without the presence of the CD8 co-receptor.  Subsequently, this TCR was successfully 

retrovirally transduced onto human donor peripheral blood lymphocytes (70).  Both 

transduced CD4 and CD8 cells demonstrated antigen recognition, and CD8 cells 

additionally demonstrated HLA-A2 and Tyrosinase specific cytolytic functionality (70).   

 

Activation-Induced Cell Death 

 Therapeutic T cells which have undergone a REP in order to achieve the necessary 

quantity of cells for infusion are susceptible to activation-induced cell death (AICD) upon 

TCR restimulation in vitro (171), which likely limits their persistence upon encountering 

tumor antigen when transferred in vivo.  While AICD is likely counterproductive for 

adoptive transfer therapy, it is a necessary mechanism of immune regulation in the 

prevention of autoimmunity.  During the context of a normal immune response, T cells 
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are activated by three separate signals consisting of cognate MHC-presented peptide to 

the TCR (signal 1), costimulatory receptor engagement such as CD28 ligation (signal 2), 

and inflammatory cytokines that instruct the T cell towards the development of effector 

functionality (signal 3).  Once properly activated, T cells undergo clonal expansion and 

move out into the periphery whereby they mount effector responses against infected 

cells displaying their cognate antigen (330,331).  

After activation and expansion of effector T cells, it is then necessary to prevent 

damage to the host caused by either the continual production of inflammatory cytokines 

or the potential onset of autoimmune or lymphoproliferative pathologies.  As such, the 

immune system negatively regulates the expansion of activated T cells by limiting their 

persistence once the invading pathogen has been cleared (332).  There are several 

mechanisms that restrain the persistence of T cells once they have been activated to 

undergo an immune response.  As T cells undergo active replication in the process of 

clonal expansion, their telomeres continually erode eventually imposing the “Hayflick 

limit” of replicative senescence (333).  T cells are also constrained by lack of cytokine 

support by the mechanism of “cytokine withdrawal-induced death” (334).  This type of 

cell death has also been termed “activated cell autonomous death” as it occurs 

independent of any TCR or death receptor signaling (335,336).  Rather, as T cells no longer 

receive cytokine support, they begin to undergo programmed cell death via the intrinsic 

apoptotic pathway mediated by a threshold of pro-apoptotic Bcl-2 family of proteins 

overcoming the resistance of anti-apoptotic factors (336). 
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In contrast, another form of programmed cell death that regulates the persistence 

of activated T cells is initiated by ligation of the TCR and is termed activation-induced cell 

death (AICD).  Ligation of the TCR is absolutely required for the onset of this type of cell 

death and can occur via both αβ and γδ TCR subsets (337).  The requirement of TCR 

signaling has been confirmed by many studies which have demonstrated that mutations 

in the ITAM signaling motifs of the CD3 co-receptor (338–340) and deletion of p56lck (341) 

thwart the occurrence of cell death upon TCR restimulation. 

As a mechanism of peripheral tolerance, AICD is exclusively constrained to cells 

that have been previously activated via a primary TCR stimulus, as naïve T cells are 

resistant to cell-death induced by TCR ligation (342).  Moreover, signaling from the 

activating cytokine IL-2 is also required to prime cells for AICD (343,344).  Consequently, 

T cells from IL-2 and IL-2Rα deficient mice are resistant to AICD (345). 

Modulation of any of the three signals involved in T cell activation can determine 

the susceptibly of an individual T cell towards AICD.  A stronger TCR stimulus (signal 1), 

either through a higher affinity TCR or concentration of antigen, makes a T cell more 

susceptible to AICD (346,347).  In parallel to TCR ligation, engagement of the co-

stimulatory receptor CD28 (signal 2) can promote the proliferation of T cells through the 

activation of NF-κB (348), enhancement of glycolytic metabolism (349), upregulation of 

telomerase (350), as well as protection from AICD (351,352).  Additionally, as T cells 

undergo a REP, they lose CD28 expression, but gain expression of another co-stimulatory 

receptor, 4-1BB, whose engagement also protects cells from AICD (171).  However, such 

co-stimulatory engagement is rarely found within the tumor microenvironment (353) 
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leaving T cells that have trafficked to the tumor devoid of this protection.  Consistent with 

the role of AICD in immune-constraint, inflammatory “signal 3” cytokines such as IL-12 

and IFNγ aid in priming T cells for AICD (354,355).  However, other cytokines, such as IL-4 

and IL-15, have been shown bolster the resistance of T cells to AICD (356,357). 

Many reports in the literature assert that Fas death receptor signaling is an 

integral part in the onset of AICD.  Indeed, Fas deficient mice have a massive 

lymphoproliferative disorder indicating a Fas-critical deficiency in immune-regulation 

(358,359).  Moreover, Fas expression is upregulated during TCR restimulation (360).  

However, multiple reports have shown that AICD still proceeds in the absence of Fas 

signaling either by the lack of Fas receptor expression (361–364) or utilization of a FasL 

blocking antibody (365,366) which suggests that  Fas is not required for cell death to occur 

following TCR restimulation (367).  Moreover, the downstream signaling components of 

AICD are not consistent with the requirement for FAS death receptor signaling.  Fas 

operates independently of ITAM signaling (368).  TCR restimulation results in the 

accumulation of reactive oxygen species (369) which is required for the onset of AICD as 

the ROS scavenger MnTBAP can protect T cells from death following TCR restimulation 

(370).  Conversely, FasL induced cell death operates independently of ROS signaling 

(370,371). While Fas induced apoptosis is inherently dependent on caspase execution, 

inhibition of caspases cannot block AICD, nor are caspases activated during AICD 

(366,367,372,373).  Moreover, the cell death morphology of AICD does not contain 

apoptotic blebs but appears more necrotic in nature (367).  Finally, small scale DNA 

fragmentation consistent with an apoptotic phenotype is also absent from AICD 
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(373,374).  Instead, AICD presents with large scale DNA damage mediated by Apoptosis 

Inducing Factor (AIF) (373). Thus, the cell death phenotype of TCR restimulated AICD is 

emerging to be more consistent with programmed necrosis (or “necroptosis”) than 

classical apoptosis (375). Consistently, RIPK1 and RIPK3, involved in the onset of 

necroptosis (376), are induced during AICD, while conversely pharmacological inhibition 

of necroptosis protects T cells from cell death following TCR restimulation (377).  

 

T cell Receptor Generated ROS and Redox Regulation of Cellular Processes 

 Generation of ROS Upon TCR Stimulation 

Ligation of the TCR results in the rapid generation of reactive oxygen species (ROS) 

with both superoxide (O2
−) and hydrogen peroxide (H2O2) species being distinctly 

generated within 15 minutes of TCR stimulation (369).  In the cell, ROS are primarily 

generated in the mitochondria as a byproduct of metabolism.  Within the mitochondria, 

Complex I and Complex III of the electron transport chain are major hubs of ROS 

generation (378).  Complex I emits superoxide into the mitochondrial matrix whereby it 

is rapidly converted to hydrogen peroxide by the antioxidant enzyme manganese 

superoxide dismutase (MnSOD/SOD2) (378).  Complex III releases superoxide into both 

the matrix and the intermembrane space (IMS) of the mitochondria (379,380).  This 

superoxide in the IMS then has the potential to be transported into cytosol of the cell, 

without prior dismutation by MnSOD2, via voltage-dependent anion channels (381).   

In the T cell, ROS has also been demonstrated to be a product of NADPH 

(nicotinamide adenine dinucleotide phosphate) Oxidase, which has classically been 
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characterized as responsible for the “respiratory burst” of pathogen killing free-radicals 

in the innate immune system (382).  However, the Laboratory of Mark Williams has 

demonstrated NADPH Oxidase to also be relevant in the generation of ROS in the T cell.  

Devadas, et al, blocked the generation of superoxide by either preincubation of T cells 

with the NADPH Oxidase inhibitor diphenylene iodonium (383,384) or the overexpression 

a dominant negative form of Rac1 (N17 Rac1), which has been implicated in the ROS 

generating functionality of NADPH Oxidase (369,385).  These data suggest a role for 

NADPH Oxidase in the production of superoxide in T cells upon TCR ligation.  

Subsequently, the lab demonstrated that T cells expressed mRNA for the NADPH Oxidase 

subunits p22phox, p47phox, p67phox, and gp91phox and also had detectable protein expression 

for the p47phox, p67phox, and gp91phox subunits (386). Moreover, T cells from mice deficient 

in either p47phox or gp91phox NADPH Oxidase subunits have defective generation of ROS 

when undergoing TCR stimulation, supporting the role of NADPH Oxidase in TCR 

stimulation induced ROS generation (386). 

 

Redox Regulation of Cellular Processes 

Given the destructive nature of free radical species, the generation of ROS by T 

cells has classically, and appropriately, been viewed in terms of regulating T cell survival 

or death (387).  Indeed, the scavenging of superoxide with the SOD mimic MnTBAP 

protects cells from AICD (370).  Moreover, blocking ROS production through the inhibition 

of mitochondrial Complex I also protects T cells from AICD (388).  However, more than 

just being a blunt force of cell destruction, the levels of ROS can exert influence in the 
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regulation of a wide array of  cellular functions outside of the paradigm of cell death (389).  

For instance, oxidative stress has long been known to be a determinant of T cell 

proliferation.  In general, the quenching of ROS through use of antioxidants has been 

shown to imped the activation, proliferation, and IL-2 secretion of mitogen stimulated T 

cells (390–393).  Incubation of T cells with the Complex I inhibitor rotenone reduced ROS 

as well as T cell proliferation, cytokine production, and reduction in the degranulation 

marker CD107a, implying a decrease in cytolytic functionality (394).  Disruption of 

Complex III through a T cell specific knockout of the Complex III subunit RISP resulted in T 

cells that were unable to undergo antigen-specific proliferation coinciding with defective 

NFAT activation, IL-2 secretion, and expression of CD25 and CD69 activation markers 

(395).  Although, on the contrary, some reports have demonstrated that the exogenous 

addition of pro-oxidants can also block T cell activation (396–398).  And moreover, 

decreasing a T cell’s antioxidant capacity through depletion of glutathione (GSH), through 

the use of buthionine sulphoximine (BSO), can also thwart T cell proliferation (399–401).   

The disagreement in these reports likely highlights the specific nature of the redox 

regulation of cellular processes, as indeed ROS levels not only dictate whether a T cell will 

die or proliferate but can have highly nuanced functional consequences for the T cell.  

Mice with a T cell specific knockout of SOD2 present with elevated levels of mitochondrial 

superoxide and a disruption in T cell thymic development rendering the mice more 

susceptible to influenza challenge (402).  In manipulating the redox environment after 

thymic development, antioxidants can push a T cell towards an increase in the Th1 

response (i.e. more IFNγ and TNFα) and a decrease in Th2 responses (i.e. less IL-4, IL-5) 
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(403–405), and pro-oxidants can have the opposite effect favoring a Th2 phenotype at 

the expense of Th1 (406,407).  Consistently, the T cell specific deletion of the NADPH 

Oxidase subunit p47phox by Jackson, et al resulted in an increase of IFNγ and IL-2 with a 

concurrent decrease in IL-4 and IL-5 (386).  This finding was further corroborated in a 

subsequent report demonstrating reduced expression of the Th2 promoting transcription 

factor Gata-3 in these p47phox deficient T cells (408,409). 

 

The Cysteine Thiol Switch 

Altogether, these studies affirm the importance of redox signaling in regulating a 

diverse array of cellular outcomes.  Of free radical species, hydrogen peroxide has 

emerged as the chief signaling molecule (410).   Hydrogen peroxide has several 

properties, particularly in contrast to superoxide, that make it an ideal molecule for 

signaling.  Hydrogen peroxide has a significantly longer half-life (1ms vs 1µs) than 

superoxide  (410).  Moreover, the instability of superoxide is further compounded by its 

rapid dismutation into hydrogen peroxide catalyzed by superoxide dismutase (SOD) 

enzymes found in the cytoplasm (CuZnSOD/SOD1), the mitochondria (MnSOD/SOD2), 

and extracellularly (SOD3) (411). Additionally, hydrogen peroxide has a relatively 

tempered rate of oxidation which allows for a certain discernment in prioritizing which 

protein residues it oxidizes, in contrast to a more reactive species, such as the hydroxyl 

radical (OH•), that is more unsystematic in its oxidative activity, haphazardly attacking all 

biomolecules (410,412).   
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The preeminent target for hydrogen peroxide is the sulfur containing thiol moiety 

(R-SH) located on cysteine residues, of which there seems to a be selective targeting of 

certain cysteine thiols within the proteome (413). The reaction of hydrogen peroxide with 

the sulfur thiol (R-SH) produces the oxidized sulfenic acid (R-SOH) through the process of 

sulfenylation (414).  Hydrogen peroxide oxidizes detoxifying enzymes, such as glutathione 

peroxidase (GPx) or peroxiredoxin (Prx), with an elevated priority due to the presence of 

catalytically advantageous thiols located within the active site of these enzymes that aid 

in a more favorable reaction (415,416).  However, amongst less reactive cysteine 

residues, it is still unclear how hydrogen peroxide discerns which residues to oxidize.  

Though several, non-exclusive, guiding principles have emerged towards understanding 

the selectivity of certain cysteine residues by hydrogen peroxide.  Certainly, a detoxifying 

enzyme may oxidize another cysteine residue as a result of its reaction with hydrogen 

peroxide, such as the oxidation of the transcription factor Yap1 by GPx3 in yeast (417). 

The localization of certain proteins relative to the production of hydrogen peroxide may 

also influence the likelihood for oxidation (414,418).  For example, the localization of 

Nox4 (NADPH Oxidase 4) to the endoplasmic reticulum is key to the regulation via 

oxidation of the ER resident protein PTP1B (419). Additionally, steric hindrance and the 

polarity of adjacent residues can influence the pKa value of an individual cysteine towards 

its reactivity with hydrogen peroxide (420). 

The elucidation of proteins that are regulated by sulfenylation is ever evolving and 

relevant for many different cellular functions (414).  For instance, sulfenylation has been 

implicated in the regulation of the PIP3/Akt proliferation pathway.  PTEN, which represses 
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phosphatidylinositol 3,4,5-trisphosphate (PIP3), and subsequent activation of the AKT 

pathway, is inactivated via transient oxidation of its cysteine residues (421).  Conversely, 

maintaining the Cys296 and Cys310 residues of Akt1 in their reduced form has been shown 

to be necessary for optimal Akt1 activation (422).  Apoptosis can be regulated through 

the inactivation of the anti-apoptotic protein Bcl-2 by oxidation of its Cys158 and Cys229 

residues (423).  The status of protein ubiquitination can also be regulated through the 

cysteine oxidization induced inactivation of deubiquitinases such as USP1 or A20 

(424,425).  Cysteine oxidation can also provide critical feedback to launch antioxidant 

protective measures within the cell during periods of increasing oxidative stress. The 

transcription factor Nrf2 coordinates the upregulation of many antioxidant genes termed 

the “antioxidant response element” and is negatively repressed via nuclear exclusion and 

ubiquitination mediated proteasomal degradation by Keap1 (426). Consequently, Keap1 

can be inactivated through oxidation of its Cys273 and Cys288 residues, allowing for the 

liberation of Nrf2 to traffic to the nucleus and transcribe pro-antioxidant genes (427). 

For the T cell, sulfenylation based signaling is emerging as a key regulator of 

activation.  Oxidation of the Cys195 residue of the calcium channel protein ORAI1 can 

inactivate it, impairing calcium influx during TCR activation (428).  Moreover, the 

transcription factor NF-κB, necessary for T cell activation, requires that the Cys62 residue 

of its p50 subunit be in its reduced state for its DNA binding activity (429).  Upon TCR 

stimulation, Michalek, et al. demonstrated that there is a global increase in the level of 

cysteine sulfenic acid (430).  Moreover, treating T cells with dimedone, which covalently 

binds to cysteine sulfenic acid and does not allow further modification (431), prevented 
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T cell proliferation, implying that both the formation of sulfenic acid and its reversal are 

critical for the induction of T cell proliferation (430).  The same study demonstrated that 

TCR stimulation results in cysteine sulfenic acid modification of the protein tyrosine 

phosphatases (PTP) SHP-1 and SHP-2 (430).  This is consistent with previous studies that 

have shown sulfenylation to be a critical regulator of global PTP activity (432) as PTPs have 

a redox sensitive cysteine in their catalytic core (433). Moreover, in the case of SH2-

domain containing PTPs, such as SHP-1 and SHP-2, unique regulatory “backdoor” 

cysteines have been identified which participate in disulfide bond formation critical for 

reversible oxidation (434).   

Beyond sulfenylation, cysteines can achieve higher oxidative states such as sulfinic 

acid (R-SO2H) and sulfonic acid (R-SO3H) which are less amenable towards being reduced 

back towards a neutral thiol.  Though, sulfiredoxin can catalyze the reduction of sulfinic 

acid with emerging signaling consequences (435).  Sulfonic acid is generally regarded as 

an irreversibly oxidized state.  Additionally, more aggressive oxidants, such as 

peroxynitrite or the hydroxyl radical, can oxidize thiols into thiyl radicals (436).  In order 

to protect proteins from further oxidation, residues can undergo an S-thiolation 

modification whereby mixed disulfides are formed between the thiol residue and another 

low molecular weight thiol (437).  When that particular low molecule weight thiol is 

glutathione (GSH), the modification is termed S-glutathionylation (438). The overall 

process of S-glutathionylation can be reversed by deglutathionylation facilitated by 

thioredoxin, glutaredoxin, (439), or sulfiredoxin (440).  The reversible nature of 

glutathionylation allows it to serve in a signaling capacity beyond antioxidant protection. 
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Glutathionylation has been shown to regulate a diverse array of cellular functions.  

Glutathionylation promotes the inactivation of NF-κB both directly on the Cys62 residue 

of its p50 subunit (441) as well as upstream inactivation of IKKβ by glutathionylation of its 

Cys179 residue (442).  Additionally the stress activated protein kinase MEKK1, also 

implicated in NF-κB signaling (443), is inhibited by glutathionylation on Cys1238 (444).  

Conversely, glutathionylation promotes Akt signaling by both activating upstream Ras on 

Cys118 (445) and inactivating PTEN (446). The tumor suppressor p53 is inactivated by 

glutathionylation of cysteines within its DNA binding domain, which prevent DNA binding 

and the necessary tetramerization of p53. (447).  The cytoskeleton can also be regulated 

by glutathionylation as the rate of actin polymerization is reduced upon glutathionylation 

of its Cys374 residue (448).  Glutathionylation in the α-rings aids to open the 20S 

proteasome facilitating the proteasomal degradation of proteins (449).  Apoptosis can be 

promoted by glutathionylation of the Fas death receptor on its Cys294 residue which 

facilities its transport to lipid rafts, encouraging the formation of the death-inducing 

signaling complex (450).  However, on the contrary, the cell death executioner Caspase 3 

can be inactivated by glutathionylation (451).  Glutathionylation of eNOS on Cys689 and 

Cys908 switches it from producing nitric oxide (NO) to superoxide (452).  Additionally, 

glutathionylation can also regulate ion channels as it inhibits both the Kir4.1-Kir5.1 inward 

rectifier K+ channel (by glutathionylation of the Cys158 residue of the Kir5.1 subunit) (453) 

and the Na,K-ATPase Na+K+ antiporter by an increase in the glutathionylation of multiple 

residues of its α-subunit (454).  Within the mitochondria, glutathionylation of Complex I 

leads to a decrease of electron transfer activity with an inverse increase in ROS production 
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(455), as well as inhibition of several metabolic enzymes: α-ketoglutarate dehydrogenase 

(456), GAPDH (457), aldose reductase (458), succinyl-CoA transferase (459).  As such, 

there are a diverse array of cellular process which are regulated by either sulfenylation or 

glutathionylation of cysteines which could like be altered modulating the redox 

environment or glutathione concentration in the cell by treatment with the glutathione 

pro-drug N-acetyl cysteine. 

 

N-acetyl cysteine 

N-acetyl cysteine (NAC) is a derivative of the sulfhydryl group containing amino 

acid cysteine whereby an acetyl group has been attached to the nitrogen atom of cysteine 

(Fig. 1).  This modification enhances the stability of cysteine, which is rapidly oxidized in 

solution to form the biologically inactive Cys-Cys disulfide dimer Cystine.  The acetyl 

moiety of NAC makes it less reactive than cysteine and thereby less susceptible to this 

oxidation/dimerization (460).  

Biochemically, NAC has been reported to have four primary mechanisms of action.  

First, NAC’s primary benefit to the cell is to serve as a pro-drug for glutathione (GSH) 

synthesis.  NAC contributes the cysteine, which is then conjoined to glutamate via the 

enzyme glutamate-cysteine ligase.  Subsequently, glycine is then added via the enzyme 

GSH synthase to complete the GSH tri-peptide.  GSH synthesis is self-regulated as GSH 

itself inhibits glutamate-cysteine ligase (461,462).  Therefore, NAC is only beneficial in this 

regard in situations where there is both depleted levels of GSH and sufficient levels of 
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Figure 1. Chemical structure of N-acetyl cysteine 
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enzymes involved in GSH synthesis are maintained (460).  In such situations, where there 

are competent levels of GSH, NAC administration can alternatively lead to an increase in 

cysteine levels in cells and in the plasma (463,464). Second, NAC is commonly regarded 

as an “antioxidant” and has often been shown to modulate oxidative stress in the 

literature (465).  However, the interpretation of NAC as a direct reducing agent is complex 

as NAC is approximately 10-fold less efficient as a reducing agent than GSH (466) and both 

NAC and GSH are orders-of-magnitude less efficient at resolving oxidative stress than 

antioxidant enzymes such as superoxide dismutase (467).   However, thirdly, NAC has 

been well documented to be important for the direct reduction of disulfide bonds.  This 

has been specifically clinically relevant in bronchial disorders whereby the disruption of 

disulfide bonds in the glycoprotein matrix of mucus by NAC aids in reducing mucosal 

viscosity (468).  Moreover, such modification of cysteine structure can have 

consequences in terms of alteration of ligand binding and structure-based functionality 

of proteins (465). Lastly, NAC can directly bind and chelate metals.  Particularly, NAC has 

been documented to chelate the food and environmental contaminate methylmercury 

(469). Administration of NAC increases the urinary excretion of methylmercury in rats in 

a dose dependent manner (470).  NAC also protects against mercury (471,472), cadmium 

(473), potassium dichromate, lead tetraacetate (474), and copper poising (475) in rat 

models as well. 

NAC can be administered orally, intravenously, or by aerosol for use as an anti-

mucosal agent.  NAC, administered orally, is quickly metabolized in the liver rendering 

just 6-10% bioavailability in the plasma with a Tmax of only 1-2 hrs (476).  Intravenous 
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administration of NAC produces a higher initial concentration in the plasma (300µmol/L 

i.v. versus 19.9µmol/L oral) (477).  However, retention of NAC in the plasma is not much 

improved with a half-life of only 2.27 hrs (477) likely due to the rapid oxidation of NAC in 

the plasma into NAC-cysteine and NAC-NAC formations (478).  

Radiolabel studies suggest that NAC does not readily cross the cell membrane 

(479) likely due to the influence of negatively charged -COOH and -SH groups.  However, 

protonation studies suggest that an acidic environment such as the stomach may put NAC 

at a more neutral isoform (480), though this has not been verified experimentally.  NAC 

has primarily been reported to enter the cell via the System XC
- cysteine-glutamate 

antiporter (481,482), though other transporters such as the System ASC (alanine-serine-

cysteine) transporter system may also facilitate the transport of NAC (483).   

The clinical utility of NAC was first demonstrated in the 1960s as an effective 

mucolytic agent in cystic fibrosis (CF) when used as an inhalant via breaking up disulfide 

bridges in the glycoproteins of the mucus (468,484).  Beyond providing aid in the 

clearance of mucus, NAC can also benefit CF patients through the elevation of GSH levels 

which are notably depressed in the epithelial lining fluid (485) and the bronchoalveolar 

lavage fluid of CF patients (486).  Additionally, NAC has also been shown to be beneficial 

in other respiratory conditions. NAC has been shown to reduce bronchial hypersecretion, 

exacerbations, and re-hospitalization episodes in chronic bronchitis and COPD (487–490).  

However, NAC does not prevent the overall decline of lung function associated with COPD 

(491).  NAC also protects against smoking induced injury of endothelial cells (492) and the 

lungs of rats exposed to cigarette smoke (493). 
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After its initial use as an anti-mucolytic agent, the other most notable and long-

standing use of NAC in the clinic has been to ameliorate the toxicity caused by 

acetaminophen poisoning (494).  The metabolism of acetaminophen produces the by-

product N-aceytl-p-benzoquinone imine (NAPQI) which is toxic to the cell (495,496).  GSH 

neutralizes NAPQI back to acetaminophen; however, overwhelming this system via 

overdose can cause a rapid depletion of GSH allowing for NAPQI to accumulate in toxicity 

(497).   As such, replenishment of GSH via NAC supplementation is thought to counteract 

this toxicity (498,499).  Resolution of toxicity is most effective when NAC can be 

administered within 8 hours of overdose (500) with no notable difference in efficacy 

between oral and intravenous administration (501).   

NAC enjoys a fairly benign safety profile even at very high doses (such as used in 

the case of acetaminophen poisoning).  Most side-effects come about through 

intravenous administration where mild nausea and gastrointestinal symptoms can occur 

(489).  More severe cases of anaphylactic reactions have been reported such as 

bronchospasm, angioedema, and hypotension, although attributed to an overestimation 

of i.v. dosage or with asthmatic patients (502).  And though extraordinarily rare, a handful 

of fatal events have been reported with improper dosing of NAC (503). 

NAC can be beneficial in certain cardiovascular applications.  The cardiovascular 

complications of hyperhomocysteinaemia can be prevented by the conversion of 

homocysteine to methionine by NAC (504).  Administration of NAC attenuates damage 

caused by myocardial infarction (505,506) in the clinic and damage caused by stroke in a 

rat model (507) most likely through the alleviation of ischemia/reperfusion injury (508).  
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Additionally, NAC has been shown to improve overall vascular health by preventing 

oxidative stress caused atherosclerotic plaques (509), inhibition of adhesion molecules 

such as ICAM and VCAM (510,511), thwarts platelet aggregation (512) and aids in 

vasodilation (513) particularly through the attenuation of angiotensin (514) and increased 

bioavailability of the vasodilator NO (515) through enhanced eNOS expression (516). 

NAC has even been shown to be beneficial in certain neuropsychiatric disorders 

both by GSH replenishment where GSH depletion associates with a neuropsychiatric 

disorder (517,518) and also by increasing the extracellular levels of glutatmate, 

stimulating the release of vesicular dopamine via group II metabotropic glutamate 

receptors (519).  In various trials, NAC has been able to demonstrate a beneficial effect of 

the symptoms associated of schizophrenia (520,521), obsessive-compulsive disorder 

(522), autism (523), and bi-polar depression (524).  Additionally, administration of NAC 

has reduced addictive behavior associated with nicotine (525), cannabis (526), cocaine 

(527), methamphetamine (528), and even gambling (529). 

Within the immune system, administration of NAC has exhibited a diversity of 

outcomes.  For instance, NAC has been shown to mediate certain autoimmune 

parameters such suppression of anti-DNA antibodies and enhancing survival in a lupus 

mouse model (530) and quelling T cell hyporesponsiveness in rheumatoid arthritis 

patients (531) as well as reduction in TNFα-induced RA related cytokines through the 

inhibition of NF-κB (532–534).  Additionally, administration of NAC has also been shown 

to attenuate neutrophil chemotaxis and ROS production (535,536).  However, in other 

studies, NAC has been shown to enhance T cell functionality.  Administration of NAC in 
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vitro can increase T cell secretion of IL-2 (537) as well as T cell proliferation (538).  

Moreover, NAC has also been shown to functionally restore the immune system in 

advanced cancer patients (539).   

As the progression of HIV exacerbates the depletion in GSH levels, and as GSH 

levels inversely correlate with patient prognosis, it was proposed in the 1990s that NAC 

supplementation may be of benefit to HIV patients (540,541).  Several studies have 

demonstrated a modest restoration in glutathione levels and immune function with NAC 

administration (542–544).  However, no studies have demonstrated a prolonged benefit, 

and other studies have contradicted the utility of NAC administration in the ability to 

increase GSH levels in HIV patients (545).  Altogether, benefit of NAC administration is 

likely transient at best as part of the pathology of HIV is interruption of the GSH synthesis 

machinery likely through a HIV-Tat mediated mechanism (545–548). 

Administration of NAC may also affect the antigen-presenting compartment of the 

immune system as well.  Cysteine supplementation to T cells by APCs has been shown to 

be critical for optimal T cell activation and proliferation (549,550) and endows them with 

protection against oxidative stress (551,552).  Moreover, elevated intracellular GSH 

content has been shown to correlate with enhanced pro-inflammatory IFNγ secretion by 

dendritic cells and macrophages (553).  As such, disruption of GSH synthesis in dendritic 

cells and T cells is one mechanism Tregs use to suppress T cell activation (554).  However, 

some studies have suggested NAC may play a detrimental role as NAC has been shown to 

suppress dendritic cell activation by its repression of NF-κB as well as reduce expression 

of CD86 and CD40 co-stimulatory molecules (555).  Altogether, studies with NAC have 
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demonstrated it can constitute a wide range of effects beyond simply being an 

antioxidant.  However, most of these reported observations with NAC, some of which 

demonstrate contradictory outcomes, must be appreciated at the specific dosage and cell 

type or disease context reported. 

 

p53 

The tumor suppressor p53 has been implicated in the onset of AICD.  In 2013, 

Chhabra & Mukherji demonstrated that the p53-inhibitor, pifithrin-u, protects T cells from 

cell death following TCR restimulation (556).  The implication that p53 is involved in AICD 

is consistent with its role as a master regulator of cell death.  First discovered in 1979 

(557), p53 was recognized in the late 1980s to be a tumor suppressor (558–560).  Since 

then, p53 has emerged to be one of the chief tumor suppressors earning the title as the 

“Guardian of the Genome” (561).  The critical role of p53 in tumor suppression is 

evidenced by the fact that it has either been deleted or functionally inactivated in nearly 

half of all cancers (562,563).  Consistently, p53-knockout mice quickly develop and 

succumb to lymphomas at approximately 6 months of age (564,565).  In melanoma, p53 

seems to be a hurdle in the initial dysplasia of benign nevi (566).  In more advanced 

melanoma, p53 has a low level of mutations, but seems to be overexpressed (567). 

The cell death functions of p53 have been characterized both within and outside 

of the nucleus. Within the nucleus, p53 functions as a transcription factor by coordinating 

the cellular response to a stress insult. Generally responding to DNA damage, p53 

preferentially upregulates DNA repair genes while halting cell cycle progression (568), 
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giving the cell an opportunity to resolve the stress and repair any damage.  However, if 

resolution of the stress insult cannot be accomplished, p53 then begins to target cell 

death genes such as Bax, Bak, Puma, etc (568). Outside of the nucleus, p53 functions in a 

transcriptionally-independent manner.  It can promote the oligomerization of Bax and 

Bak at the outer membrane of the mitochondria towards the formation of the 

mitochondrial outer membrane permeabilization, and it can also sequester Bcl-2 and Bcl-

xL which antagonize Bax/Bak oligomerization (569,570). 

In unstressed cells, p53 levels are repressed through proteasomal degradation via 

the E3-ubiquitin ligase HDM2 whereby it binds and ubiquitinates the Transactivation 

Domain 1 of p53 targeting it for proteasomal degradation (571).  In response to stress, 

p53 is phosphorylated, and the resulting conformational change results in dissociation 

from HDM2 (572,573).  One of the primary residues to undergo phosphorylation in 

response to cellular stress (particularly DNA damage) is Serine-15 (574).  In addition to 

facilitating the dissociation of p53 from HDM2, phosphorylation on Ser15 also promotes 

accumulation of p53 in the nucleus, another hallmark of p53 activation (Fig. 2) (575,576).  

Ser15 is located within a nuclear localization signal (577) as well as a nuclear export signal 

motif, which is inactivated via Ser15 phosphorylation retaining p53 in the nucleus (578).  

Furthermore, the phosphorylation of Ser15 is necessary for p53 functionality as an alanine 

substitution mutation protects cells from death following genotoxic stress (579).  

Moreover, cytoplasmic sequestration is one common mechanism whereby tumor cells 
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Figure 2. p53 is activated by phosphorylation and nuclear accumulation. (1) In 
unstressed cells, the E3 ubiquitin ligase MDM2 (HDM2 in the human) ubiquitnates p53 
resulting in proteasomal degradation. (2) DNA damage results in the activation via 
autophosphorylation of ATM on Ser1981 (3) Activation of ATM results in the 
downstream phosphorylation of p53 on one or more of its N-terminal serines which 
promotes a conformational change allowing it to dissociate from MDM2. (4) p53 
accumulates in the nucleus whereby it begins to promote the transcription of cell cycle 
arrest and repair genes, and then, if the stress cannot be resolved, p53 ultimately 
targets pro cell death genes (i.e. BAX, NOXA, PUMA) for transcription [Adapted from 
(580)]. 
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deactivate p53 functionality in the nucleus, further supporting a cell death role of nuclear 

p53 (581). 

p53 seems to play more complex role in the immune system than simply 

maintaining genomic integrity.  Watanabe et al. demonstrated that p53 is critical to 

blocking non-specific IL-2 driven T cell proliferation, enforcing the requirement of antigen-

specific TCR ligation for proliferation (582).  p53 has also been shown to regulate 

autoimmunity.  p53 promotes the differentiation of Tregs by conversely dampening the 

differentiation of Th17 cells through repression of STAT3 (583).  Consistently, 

autoimmunity is exaggerated where there is a loss of p53 expression or function such as 

in arthritis (584–588), multiple sclerosis, (589,590), and Crohn’s disease (591,592).  

 

ATM 

The chief kinase responsible for phosphorylation of p53 is Ataxia Telangiectasia 

Mutated (ATM).  ATM derives its name from being functionally inactivated in the 

neurodegenerative disease Ataxia Telangiectasia (593).  One of the many consequences 

of Ataxia Telangiectasia is a high rate of lymphoid malignancies, which is consistent with 

the failure of T cells from Ataxia patients to undergo cell death in response to DNA 

damaging insults (594).  DNA damage, particularly the presence of double-strand DNA 

breaks (DSB), activates ATM.  In response to DSB, the DNA damage sensing MRN complex 

targets ATM to the lesion, resulting in the autophosphorylation of ATM on Serine 1981.  

In its inactive form, ATM is in a dimer conformation, and autophosphorylation on Ser1981 

causes it to disassociate into its active, monomeric form (p-ATM) which engages in 
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downstream kinase activity, such as phosphorylation of p53 on Ser15 (595).  

Consequently, T cells from Ataxia patients have reduced levels of p-p53Ser15 upon 

genotoxic stress (596). 

However, while ATM has primarily been regarded to be activated by DNA damage, 

several reports have demonstrated that ATM can be activated by oxidative stress (597) 

or by hypoxia (598) in the absence of DNA damage.  As such, activation of ATM alone is 

not sufficient to suggest the onset of DNA damage within a cell.  Additional confirmation, 

such as the presence of γH2AX foci, should be examined as well to confirm that ATM is 

indeed being activated by bona fide DNA damage (599).   

 

T cell Exhaustion and PD-1 

 An acute immune response effectively removes the foreign pathogen and its 

associated antigens allowing for contraction with a subset of cells remaining as memory 

cells.  However, chronic infections or cancers, such as melanoma (600), which have 

evaded an initial immune response, are not resolved resulting in the continuation of 

antigen engaging the immune system (601).  Such chronic stimulation leads to T cells 

exhibiting an exhausted phenotype denoted by lack of adequate effector functionality 

(602,603).  Additionally, exhausted T cells express key inhibitory receptors such as PD-1, 

TIM-3, and/or LAG-3 (604). 

 T cells which have trafficked to the tumor microenvironment are reported to be 

exhausted even in the early stages of cancer (605), and exhaustion involves epigenetic 

modification to the T cell (606,607).  Simply removing antigen does not revert an 
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exhausted phenotype (608).  As such, PD-1 levels remain high on T cells from HIV patients 

even when viral load is significantly suppressed through retroviral therapy (606).  

However, modulation of inhibitory receptor signaling, such as PD-1/PD-L1 blockade can 

restore cells from an exhausted phenotype (609) given that PD-1 expression is not too 

high (610). 

Programmed Death-1 (PD-1), aptly named first being discovered in T cells 

undergoing cell death, (611) is the most characterized marker of T cell exhaustion.  PD-1 

is initially induced upon TCR stimulation in T cells (612).  During an acute infection, PD-1 

levels peak at around Day 6 after stimulus and then contract back to basal levels.  

However, during chronic infection, where there is continued antigenic stimulation, PD-1 

levels remain elevated (609).  As such, PD-1 is expressed on viral-specific cells of patients 

with HIV (613), hepatitis B (614), and hepatitis C (615).  Additionally, as the melanoma 

tumor microenvironment provides a source for continuous antigen exposure, PD-1 

reliably marks melanoma specific TILs within the tumor microenvironment (616). 

Expression of PD-1 is promoted by the transcription factor EOMES and repressed 

by T-bet expression (617,618).  Ligands for PD-1 are PD-L1 (619) and PD-L2 (620).  PD-L1 

is expressed on melanoma cells (621). Ligation of PD-1 during activation can thwart 

proliferation, cytokine production, cytolytic function and impair T cell survival. PD-1 

signaling attenuates phosphorylation of TCR signaling elements CD3ζ and ZAP70, reduces 

production of IL-2 (622), and depresses the PI3K-Akt cell proliferation pathway (623). 

Consistent with its involvement in negative immune regulation, PD-1 knockout 

mice demonstrate an autoimmune phenotype via autoimmune dilated cardiomyopathy 
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(624), lupus-like disease (625) and are more susceptible to experimental autoimmune 

encephalomyelitis (626).  Accordingly, mutational defects in PD-1 have been associated 

with human disease conditions such as multiple sclerosis (627), lupus (628), and Type I 

diabetes (629). Conversely, PD-1 deficient T cells demonstrate enhanced B16 tumor 

control in a murine adoptive transfer model (630).  Together, these observations suggest 

that active PD-1 pathways quell the functionality of T cells.   

 

Foxo1 

Expression of PD-1 is regulated upstream, in part, by the activity of the 

transcription factor Foxo1 (631).  Foxo1 (Forkhead Box O1) was discovered in 1993 (632) 

and has primarily been regarded as transcription factor acting as a tumor suppressor 

(633).  For instance, Foxo1 can be activated via DNA damage in the cell and regulates cell 

death as siRNA knockdown of Foxo1 protects cells from DNA damage induced cell death 

(634).   

As a transcription factor, Foxo1 is primarily regulated by its subcellular location in 

relation to the nucleus.  Foxo1 is chiefly inactivated via phosphorylation by Akt at its 

Thr23, Ser256, and Ser319 residues.   Phosphorylation of Foxo1 causes it to bind with 14-

3-3 proteins sequestering it in the cytoplasm (635–637) in part through blockade of 

Foxo1’s nuclear localization signals (638).  Additionally, Akt mediated phosphorylation of 

Foxo1 can be enhanced by other post-translational modifications such as acetylation, 

which also interferes with its ability to bind to DNA (639).  Moreover, beyond restricting 

nuclear access, sustained Akt signaling can also promote the ubiquitination and 
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subsequent proteasomal degradation of Foxo1 (640,641) via Skp2 of the Skp1/culin 1/F-

box E3 ligase complex (642). 

Activation of PI3K-Akt pathways during the initial activation of T cells results in the 

nuclear exclusion and inactivation of Foxo1 (643).  However, after this initial repression 

of Foxo1 during T cell activation, studies over the past decade have demonstrated that 

the subsequent regulation of Foxo1 expression has major implications for T cell 

differential fate.  For instance, differentiation of T follicular helper cells in response to 

ICOS signaling is dependent on the inactivation of Foxo1 (644).  Memory markers and/or 

trafficking molecules such as CD62L, IL-7Rα, and CCR7 are amongst Foxo1 target genes 

(645,646).  As such, Foxo1 has been shown to promote the differentiation of memory T 

cells (647) in part via the repression of T-bet and promotion of EOMES transcription 

factors (648,649).  Consequently, repression of Foxo1 promotes T-bet expression and 

differentiation into effector cells including the expression of the cytotoxic effector 

molecule granzyme B (648).  Concurrently, Foxo1 promotes the generation of Tregs with 

the T cell specific knockout of Foxo1 resulting in defective development of both thymic 

derived and inducible Tregs.  As a consequence, these mice present with an exaggerated 

autoimmune phenotype characterized by enhanced anti-nuclear antibody production, 

organ infiltration by lymphocytes, and the onset of exocrine pancreatitis and hind limb 

paralysis (650,651). Conversely, Foxo1 represses Th17 differentiation through inhibition 

of RORγt (652).  Additionally, Foxo1 expression has been shown to associate with 

exhausted T cells.  Chronically stimulated exhausted T cells have more nuclear active 
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Foxo1 than acute stimulated cells, and moreover, Foxo1 promotes the expression of the 

exhaustion-associated transcription factor EOMES and inhibitory receptor PD-1  (631).   

 

Concluding Remarks 

The adoptive transfer of melanoma specific T cells has demonstrated a substantial 

improvement in outcomes, and even curative potential, for patients with late stage 

metastatic melanoma (219).  However, the success of therapy has largely been dependent 

on the quality of the infused cells, particularly the ability of the cells to persist and 

continue to control tumor once they are transferred.  The rapid expansion of T cells 

pushes the activation status of these cells more towards a terminally differentiated 

effector phenotype (170) which enhances their susceptibility to AICD when the cells are 

restimulated with tumor antigen (171).  The ROS that are generated upon TCR 

restimulation (369) are a critical component in the onset of this type of programmed cell 

death (370).  However, ROS generation has also been characterized as a necessary 

secondary messenger in lymphocyte activation (410).  Therefore, it is necessary to further 

elucidate what pathways are responsible in escalating ROS accumulation from benign 

messenger to cell executioner in the context of AICD.  

 The glutathione pro-drug NAC has been shown to protect T cells from AICD and 

increase their persistence when transferred into a non-tumor bearing host (653).  

However, it has not been demonstrated whether this protection from AICD afforded by 

NAC is transient or if NAC provides a durable enhancement in phenotype that would be 

of benefit upon encounter with tumor antigen in a melanoma challenged host. As NAC 
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has previously demonstrated a wide range of phenotypic improvements for cultured T 

cells such as enhanced antioxidant capacity, proliferation potential, cytokine production, 

and improvement in the functional capacity of cells derived from advanced staged cancer 

patients (537,539,653,654), we reasonably hypothesize that culturing melanoma specific 

T cells in NAC prior to adoptive would improve their overall anti-melanoma performance, 

in part, through a reduced susceptibility to AICD. 
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CHAPTER 2 - TCR RESTIMULATION RESULTS IN ACTIVATION OF THE DNA DAMAGE 

RESPONSE PATHWAY IN THE ONSET OF ACTIVATION-INDUCED CELL DEATH 
 

Introduction 

 Therapeutic T cells which have been subjected to a rapid expansion protocol (REP) 

are susceptible to activation-induced cell death (AICD) when restimulated in vitro with 

tumor antigen (171).  As such, AICD likely restricts the durability of transferred T cells to 

persist and mount anti-tumor cytolytic effector functions in vivo, curtailing their overall 

abundance and therapeutic efficacy.  AICD, which is triggered by restimulation of the T 

cell receptor (TCR) on a previously activated T cell, is independent of death receptor 

signaling and the downstream activation of caspases, but is dependent on the 

accumulation of reactive oxygen species (ROS) and activation of c-Jun NH2-terminal 

kinase (JNK) (366,370).  Moreover, pharmacological inhibition of p53, a chief cell death 

regulator downstream of JNK and ROS (655), by pifithrin-α (Mehrotra Lab, unpublished 

data) and pifithrin-µ (556), has been shown to protect T cells from AICD. 

However, off-target effects cannot be excluded from observations generated with 

pharmacological inhibitors.  Pifithrin-α confers protection to both p53 null and competent 

cells from topoisomerase induced apoptosis (656), and pifithrin-µ has been additionally 

characterized as an HSP70 inhibitor advancing protein aggregation induced cell death 

(657).  As such, this aim embarked to directly confirm the role of p53 in AICD by use of 

the p53 knockout mouse (658).  The role of p53 during AICD in human cells was 

additionally explored by investigating two hallmarks of p53 activation: the 

phosphorylation status of p53 and its accumulation in the nucleus (572,659).  
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Furthermore, these observations acted as “barcode” (568) leading to the novel discovery 

that the DNA damage response pathway is activated in T cells upon TCR restimulation 

induced cell death.  

 

T cells void of p53 are less susceptible to AICD 

To directly determine the role of p53 in AICD, the p53-knockout (p53KO) mouse 

was utilized (658).  In order to make findings more relevant in a melanoma antigen-

specific model, p53KO mice were crossbred with the h3T mouse to generate a h3T+p53KO 

strain of mice.  T cells from h3T mice constitutively express the human TIL1383I TCR 

conferring the ability of T cells to recognize and mount a cytolytic response against 

hTyr368-376
  expressing melanoma cells in a HLA-A2 restricted manner (660).  To ensure 

that deletion of p53 did not interfere with the functionality of T cells, splenocytes from 

h3T+/p53KO mice and h3T+/p53WT littermate controls were assessed for their ability to 

recognize antigen as determined by the expression of activation markers and secretion of 

IFNγ.  When stimulated overnight with hTyr368-376
 cognate peptide, there was no 

significant difference in the expression of CD25 or CD69 activation markers between 

splenocytes harvested from h3T+/p53KO mice and those derived from h3T+/p53WT controls 

(Fig. 3).  However, splenocytes from h3T+/p53KO mice did have a significant increase 

(~62.3%) in the amount of IFNγ secreted when restimulated with hTyr368-376 pulsed T2 

cells in comparison to splenocytes from h3T+/p53WT littermates (Fig. 4).  Together, these  
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Figure 3. p53 status does not alter expression of CD25 and CD69 activation markers.  
Freshly isolated splenocytes from h3T+/p53WT and h3T+/p53KO mice were co-cultured at 
a 1:1 ratio overnight with T2 cells alone (no peptide) or T2 cells pulsed with either Mart 
(1.0µg/mL) or hTyr368-376 (1.0µg/mL) peptide.  After overnight co-culture, cells were 
then stained with fluorochrome conjugated antibodies for (A) CD25 or (B) CD69.  Left 
panels display representative contour plot of Vβ12+CD8+ gated cells for each indicated 
marker. Right panels are mean ± SEM of percent positive cells for each indicated marker 
in Vβ12+CD8+ gated cells of n=5. 
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Figure 4. Lack of p53 increases m-IFNγ cytokine secretion. Freshly isolated splenocytes 
from h3T+/p53WT and h3T+/p53KO mice were co-cultured overnight at a 1:1 ratio with T2 
cells alone (no peptide) or T2 cells pulsed with either Mart (1.0µg/mL) or hTyr368-376 
(0.1µg/mL or 1.0µg/mL) peptide.  Supernatants were collected and analyzed for m-IFNγ 
concentration (pg/mL) via ELISA.  Displayed is mean ± SEM of m-IFNγ (n=5, *p<0.05, 
**p<0.01). 
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data affirm that T cells derived from h3T+/p53KO are not defective in their ability to 

recognize antigen. 

To determine if p53 status altered T cell susceptibility to AICD, freshly isolated 

splenocytes from h3T+/p53KO and h3T+/p53WT mice were activated for 48 hours with 

plate-bound anti-CD3 and anti-CD28, and then subsequently washed, rested overnight, 

and restimulated with hTyr368-376 pulsed T2 cells.  After 4 hours of peptide restimulation, 

T cells were stained with Annexin V, which binds to phosphatidylserine on the outer 

plasma membrane of the cell.   Phosphatidylserine is normally restrained to the inside of 

the cell but is exposed on the surface when a cell losses plasma membrane asymmetry in 

the early phase of cell death (661).  Restimulation with hTyr368-376 for 4 hours caused an 

increase in Annexin V binding.  T cells co-stained with 7-aminoactinomycin D (7-AAD), a 

membrane impermeant dye that stains cells with compromised plasma membrane 

integrity occurring in late-stage cell death (662), did not result in an increase in 7-AAD 

staining (Fig. 5a), indicating that 4 hours of peptide stimulation within our model system 

captured cells in the early stages of cell death kinetics.  Splenocytes from h3T+/p53WT 

mice, when restimulated with hTyr368-376 peptide pulsed T2 cells, exhibited a ~2.7-fold 

higher level of Annexin V than those restimulated by Mart control peptide.  However, 

splenocytes from h3T+/p53KO mice demonstrated resistance to AICD as they consistently 

exhibited an approximately 17% decrease in Annexin V staining than their h3T+/p53WT 

littermate counterparts (Fig. 5).   
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Figure 5. Presence of p53 exacerbates cell death upon TCR restimulation. Splenocytes 
from h3T+/p53WT and h3T+/p53KO mice were activated for 48 hrs with plate-bound anti-
CD3 (1µg/mL) and anti-CD28 (2µg/mL), rested overnight, and then restimulated by co-
culture at a 1:1 ratio with T2 cells pulsed with either Mart (1.0µg/mL) or hTyr368-376 
(1.0µg/mL) peptide for 4 hrs.  (A) Representative flow plot of Annexin V and 7AAD 
expression following restimulation in Vβ12+CD8+ gated cells in representative 
experiment.  (B) Quantification of mean ± SEM of fold change (hTyr/Mart) in Annexin V 
MFI expression in Vβ12+CD8+ gated cells (n=11, **p<0.01). 
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To further determine if protection afforded by p53 knockdown was relevant in the 

context of T cells that are transduced with an antigen-specific TCR, splenocytes from p53-

knockout mice (and wild type controls) were activated and transduced with the TIL1383I 

TCR.  Consistent with results observed in the h3T native TCR model, restimulation of 

transduced T cells with hTyr368-376
 peptide demonstrated a significant protection 

(p=0.025) for p53KO cells compared to p53WT cells.  Additionally, TIL1383I TCR transduced 

murine T cells were restimulated with the HLA-A2 expressing B16(A2) murine melanoma 

cell line to undergo AICD relative to HLA-A2‒ B16 cells as a control.  p53KO transduced T 

cells exhibited a 25.7% decrease in Annexin V expression when restimulated with HLA-A2 

matched B16(A2) cells compared to p53WT cells (Fig. 6).  Together, these data indicate 

that ablation of p53 results in a partial, but significant, reduction in AICD susceptibility 

suggesting that p53 is likely involved in the onset of AICD and is relevant for both native 

expressing TCRs and transduced engineered cells. 

 

p53 is activated via phosphorylation and accumulation in the nucleus 

Protection of T cells from AICD via p53 deletion prompted the investigation into 

the activation status of p53 upon TCR restimulation.  An essential hallmark of initial p53 

activation is the phosphorylation of one or more of its N-terminal serines, which facilitates 

the dissociation from its chief negative regulator HDM2 (572,573).  To determine the 

phosphorylation status of p53 during AICD in human cells, PBMCs which were previously 

activated with plate-bound anti-CD3 and anti-CD28, were invoked to undergo AICD 
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Figure 6. TIL1383I TCR transduced p53KO mouse splenocytes are protected from AICD.  
WT and p53KO mice were activated (with anti-CD3 & anti-CD28) and transduced with 
the TIL1383I TCR.  Cells were cultured 3 more days after transduction and then 
restimulated by co-culture at a 1:1 ratio with T2 cells pulsed with either Mart 
(1.0µg/mL) or hTyr368-376 (1.0µg/mL), or cells were co-cultured at a 1:1 ratio with B16 
(HLA-A2ꟷ) or B16-A2 (HLA-A2+) murine melanoma cells to undergo AICD for 4 hrs. (A) 
Representative histograms of Annexin V expression in Vβ12+CD8+ gated cells.  (B) 
Quantification of mean ± SEM of Annexin V+ amongst Vβ12+CD8+ gated cells (n=2, 
*p<0.05). 
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by restimulation with plate-bound anti-CD3.  This polyclonal stimulation resulted in a 

time-dependent increase in Annexin V staining (Fig. 7a), indicative of these T cells 

undergoing AICD.  In parallel, cells were stained intracellularly with a phospho-specific 

fluorochrome conjugated antibody for p-p53Ser15 as well as total p53.  The amount of 

phosphorylated p-p53Ser15 increased in a similar time-dependent manner as observed 

with Annexin V staining with a 3.72-fold increase at 2 hours of anti-CD3 restimulation as 

well as an overall stabilization of total p53 expression (~2.94-fold increase) (Fig. 7b). 

With its primary role as a transcription factor, nuclear accumulation is another 

indication of p53 activation (576,659).  To investigate the subcellular distribution of p53 

upon TCR restimulation, previously activated human PBMCs were induced to undergo 

AICD with polyclonal anti-CD3 restimulation and were examined using the Amnis 

ImageStream imaging flow cytometer which combines flow cytometry with cellular 

imaging.  In addition to being stained with p53 and p-p53Ser15, PBMCs were labeled with 

the nuclear marker Hoechst.  Within two hours of TCR restimulation, there was nearly a 

9-fold increase in the amount of p53 that co-localized with the Hoechst stained nucleus 

(Fig. 8a-c).  Additionally, nearly all (>97%) of the Ser15-phosphorylated p53 was detected 

in the nucleus (Fig 8d), which is consistent with reports that have demonstrated Ser15 

aids in nuclear accumulation and retention of p53 (577,578).   

As p53 can have a transcriptionally independent role in cell death at the 

mitochondria, cells were additionally stained with the mitochondrial marker  
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Figure 7. p53 is phosphorylated on its Serine 15 residue upon TCR restimulation in 
human PBMCs. Previously activated human PMBCs were restimulated with plate-bound 
anti-CD3 (5µg/mL) for up to 120 min.  Left panels are representative histograms and 
contour plots of (A) Annexin V and (B) p53 and p-p53Ser15 expression after 120 min of TCR 
restimulation in CD8+ gated cells.  Right panels denote quantification of each indicated 
maker in CD8+ cells of time course experiments with each of the four donors (grey lines) 
and the mean of all donors (black line). *p<0.05, **p<0.01, and ***p<0.0001.  
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MitoTracker- DeepRed.  Visual and quantitative analysis revealed that virtually none of 

the p53 fluorochrome conjugated antibody co-localized with MitoTracker (Fig. 8e, <0.3%).  

Together these results demonstrate that p53 is activated via phosphorylation and 

accumulation in the nucleus following TCR restimulation, and that p53 is likely acting in 

its role as a transcription factor during the onset of AICD. 

 

ATM is activated and required in the onset of AICD 

Ataxia telangiectasia mutated (ATM), the chief kinase responsible for the 

phosphorylation of p53 on Ser15, is activated via autophosphorylation on its Ser1981 

residue.  As such, the activation status of ATM was investigated via probing for the 

expression levels of p-ATMSer1981 in previously activated human PBMCs undergoing anti-

CD3 restimulation.  Indeed, ATM was found to be phosphorylated in a time-dependent 

manner similar to the upregulation of p-p53Ser15 upon TCR restimulation with an 

approximate 4.6-fold increase in the amount of p-ATMSer1981 after 2 hours of TCR 

restimulation (Fig. 9a).  As other kinases could potentially be responsible for the 

phosphorylation of p53, cells were additionally preincubated with the ATM inhibitors 

Caffeine or KU-55933  (663,664).  Both inhibitors faithfully prevented the phosphorylation 

of ATM and additionally blocked the downstream phosphorylation of p53 (Fig. 9a), 

suggesting that ATM is necessary for the phosphorylation of p53 on Ser15 following TCR 

restimulation.  Furthermore, in cells that were stained in parallel with Annexin V, 

inhibition of ATM nearly completely (>99%) prevented cell death resulting from TCR 
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Figure 8. p53 translocates to the nucleus upon TCR restimulation. Previously activated 
human PMBCs were restimulated for 60 or 120 min with anti-CD3 and stained with 
Hoechst, MitoTracker-DeepRed, p53, and p-p53Ser15.  Cells were acquired on the Amnis 
ImageStream with at least 10,000 events collected.  Cells were gated on CD8+ cells prior 
to further analysis. Representative images show localization (A) p53 and (D) p-p53Ser15 
relative to Hoechst stained nucleus. (B) Representative similarity histogram of cells co-
stained with p53 and Hoechst after TCR restimulation (C) Quantification (mean ± SEM) 
of percent positive for p53/Hoechst co-localization defined as a similarity score ≥1 (E) 
Same cell in ‘D’ exhibiting p53 relative to MitoTracker-DeepRed (n=2, *p<0.05). 
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restimulation (Fig. 9b).  Together these data suggest that ATM activity is responsible for 

the phosphorylation of p53 upon TCR restimulation and is a novel upstream requisite 

factor in the onset of AICD. 

 

TCR restimulation results in the rapid upregulation of DNA damage markers 

Activation of the p-ATMSer1981/p-p53Ser15 pathway is classically defined as a DNA 

damage response pathway (665).  However, this pathway can be activated independent 

of DNA damage via oxidative stress or hypoxia (595).  As oxidative stress has already been 

implicated in the onset of AICD (370), the expression of two well defined markers of DNA 

double-strand breaks, γH2AX and p-SMC-1 (599), were examined to determine if 

activation of the p-ATMSer1981/p-p53Ser15 occurred in the presence of DNA damage.  

Indeed, polyclonal anti-CD3 restimulation of previously activated human PBMCs resulted 

in an increase of these DNA damage markers with a significant, 3-fold increase in 

expression within 15 min of restimulation and remained elevated throughout the 2 hour 

timecourse (Fig. 10).  These data indicate that evidence of DNA damage parallels the onset 

of ATM activation and suggest that TCR restimulation results in DNA damage and 

subsequent activation of the DNA damage response pathway leading to AICD. 

 
Detection of DNA damage response pathway activation in TIL1383I TCR transduced 
therapeutic T cells 
 

As the DNA damage response pathway further elucidates signaling pathways 

involved in AICD, blocking components of that pathway, or engineering cells with 
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Figure 9. ATM is activated and required for cell death following TCR restimulation in 
human PBMCs. Previously activated human PBMCs were restimulated with anti-CD3 
(5µg/mL) for 120 min with or without preincubation with Caffeine (10mM) or KU-55933 
(100µM) 1hr prior to restimulation.  After restimulation, T cells were stained in parallel 
for (A) expression of p-ATMSer1981 and p-p53Ser15 or (B) Annexin V expression.  Left panels 
show representative contour plot or histogram of CD8+ gated cells.  Right panel displays 
quantification of mean ± SEM for each indicated marker in CD8+ gated cells (n=3, 
*p<0.05, ns=not significant).  
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Figure 10. TCR restimulation results in the rapid upregulation of DNA damage markers 
in human PBMCs. Previously activated human PBMCs were restimulated with plate-
bound anti-CD3 (5µg/mL) for up to 120 min.  Left panels are representative contour 
plots of γH2AX and p-SMC-1 expression in CD8+ gated cells after 120 min of TCR 
restimulation.  Right panels denote quantification of time course experiments for each 
indicated marker in CD8+ gated cells with each of the three donors (grey lines) and the 
mean of all donors (black line). n=3, **p<0.01, and ***p<0.0001.  

 

  



www.manaraa.com

75 

enhanced DNA repair capacity, may improve therapeutic outcomes. Therefore, it was 

investigated whether these observations from restimulated polyclonal PBMCs could be 

applied to therapeutic T cells used in the clinic. To determine the clinical relevance of 

these findings, we obtained TIL1383I transduced T cells that had been prepared for  

adoptive cell transfer as part of an ongoing clinical trial (NCT01586403) from both 

melanoma patients enrolled in the trial and healthy donor controls. These TIL1383I 

transduced cells were co-cultured overnight with either HLA-A2+ matched MEL624 cells 

or HLA-A2ꟷ MEL624-28 cells as a negative control.  Previously activated by a REP, 

restimulation of the TCR of TIL1383I TCR transduced human T cells by co-culture with 

MEL624 cells caused the T cells to undergo cell death as evidenced by a 2.4-fold increase 

in Annexin V staining compared to cells co-cultured with MEL624-28 cells (Fig. 11).  

Concurrently, MEL624 co-cultured cells exhibited significant increases in p-ATMSer1981 

(2.5-fold) and γH2AX (1.7-fold) expression levels (Fig. 11).  Activation of the DNA damage 

response pathway was also observed in the CD4+ T cell population (Fig. 12).  No significant 

difference was observed in Annexin V, γH2AX expression, or activation of ATM between 

melanoma patients and healthy controls.  Altogether, these results suggest that antigen-

specific restimulation of the TCR by tumor cells likely induces DNA damage in therapeutic 

T cells in the onset of AICD. 
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Figure 11. DNA damage and ATM activation occurs in CD8+ TIL1383I TCR transduced 
human T cells restimulated with MEL624 melanoma cells. TIL1383I TCR transduced 
human T cells were co-cultured overnight at a 1:1 ratio with either MEL624-28 (HLA-
A2ꟷ) or MEL624 (HLA-A2+) cells. Left panels display Annexin V, γH2AX, and p-ATMSer1981 
expression amongst CD34+CD8+ gated cells.  Right panels denote quantification of 
percent positive for each labeled marker in 3 healthy donors (grey lines) and 3 
melanoma patients (black lines) in CD34+CD8+ gated cells. (n=3, **p<0.01, ***p<0.001). 

 

 



www.manaraa.com

77 

 

Figure 12. DNA damage and ATM activation occurs in CD4+ TIL1383I TCR transduced 
human T cells restimulated with MEL624 melanoma cells. TIL1383I TCR transduced 
human T cells were co-cultured overnight at a 1:1 ratio with either MEL624-28 (HLA-A2ꟷ) 

or MEL624 (HLA-A2+) cells. Left panels display Annexin V, γH2AX, and p-ATMSer1981 
expression amongst CD34+CD4+ gated cells.  Right panels denote quantification of 
percent positive for each labeled marker in 3 healthy donors (grey lines) and 3 
melanoma patients (black lines) in CD34+CD8+ gated cells. (n=3, *p<0.05, ****p<0.0001).  
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Accumulation of ROS is responsible for activation of the DNA damage response 
pathway upon TCR restimulation 
 

Among endogenous sources of DNA damage, oxidative stress is a predominant 

assailant of DNA damage within the cell (666).  ROS generated by TCR restimulation has 

previously been characterized to occur within a similar timeframe as our observation of 

DNA damage (≤15 min) (369).  Additionally, as the accumulation of ROS has already been 

implicated in the onset of AICD (370), we sought to delineate whether oxidative stress 

was responsible for this observed incursion of DNA damage following TCR restimulation 

or, if rather, this was the result of a separately occurring phenomenon.  To address this 

question, previously activated human PBMCs were preincubated with 50mM of the 

antioxidant N-acetyl cysteine (NAC) 60 min prior to restimulation with anti-CD3.   

Anti-CD3 restimulated human PBMCs were stained with the ROS-reactive dye 

2',7'-dichlorodihydrofluorescein diacetate (DCFDA).  Untreated cells exhibited an ~66.6% 

increase in the DCFDA MFI when restimulated with anti-CD3 which was reduced by 

~38.8% when the cells were preincubated with NAC (Fig. 13a).  Moreover, pretreatment 

with NAC prevented the downstream activation via phosphorylation (667) of p-

JNKThr183/Tyr185 , which has also been shown to be required for AICD (366) (Fig. 13b). 

As previously reported, NAC treatment protects T cells from AICD following TCR 

restimulation (653) as demonstrated by the failure to increase the amount of Annexin V 

staining upon anti-CD3 restimulation (Fig. 14a).  In parallel, pretreatment of cells with 

NAC also reduced the onset of DNA damage marker expression and subsequent activation  
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Figure 13. Pretreatment with NAC prevents TCR restimulation induced ROS 
accumulation and JNK activation in human PBMCs.  Previously activated human 
PBMCs were pretreated with NAC (50mM) 60 min prior to restimulation with anti-CD3 
(5µg/mL) for 4 hrs.  Left panels are representative histograms of (A) DCFDA and (B) p-
JNK expression in CD8+ gated cells.  Right panels display quantification (mean ± SEM) of 
each indicated marker in CD8+ gated cells (n=3, *p<0.05, **p<0.01, ns=not significant). 
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of the DDR pathway as exhibited by a 94%, 69%, and 81% reduction in the expression of 

γH2AX, p-ATMSer1981, and p-p53Ser15 respectively (Fig. 14b-d).  

Taken together, these results suggest that the accumulation of ROS, previously 

defined to be a requisite factor for AICD (370), is the cause for the onset of the DNA 

damage response pathway caused by TCR restimulation.  Furthermore, this apparent 

onset of DNA damage activates p53 via phosphorylation of its Ser15 by ATM, confirming 

the likely role of p53 in the involvement of AICD demonstrated by previous inhibition and 

knockout studies (Fig. 15) (556,668). 
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Figure 14. Pretreatment with NAC prevents the induction of γH2AX and activation of 
the DDR pathway upon TCR restimulation in human PBMCs.  Previously activated 
human PBMCs were pretreated with 50mM NAC 60 min prior to restimulation with anti-
CD3 (5µg/mL) for 4 hrs.  Left panels are representative histograms of (A) Annexin V, (B) 
γH2AX, (C) p-ATMSer1981, and (D) p-p53Ser15 expression in CD8+ gated cells.  Right panels 
display quantification of mean ± SEM (n=3, *p<0.05, **p<0.01). 
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Figure 15. Signaling schematic of DDR pathway activation in AICD.  TCR restimulation 
results in the activation of JNK and accumulation of ROS [Fig. 13 and (366,369,370)].  
The accumulation of ROS results in the activation/phosphorylation of ATM (Fig. 9) and 
the downstream phosphorylation of γH2AX (Fig. 10), which is indicative of DNA damage 
within the cell.  Downstream of ATM, p53 is phosphorylated on Ser15 (Figs 7,9) which 
can be blocked by the ATM inhibitors Caffeine or KU55933, which also inhibits AICD 
(Fig. 9).  Upstream, neutralization of ROS accumulation by pre-treatment with the 
antioxidant NAC (Fig. 13) blocks ATM activation and subsequent phosphorylation of 
γH2AX and p53 protecting the T cells from death following TCR restimulation (Fig. 14).  
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CHAPTER 3 – CULTURING T CELLS IN N-ACETYL CYSTEINE IMPROVES THEIR ANTI-

TUMOR FUNCTIONALITY 

 

Introduction 

As acute treatment of T cells with NAC protected them from the apparent onset 

of DNA damage and the onset of AICD, we postulated that enhancing the antioxidant 

capacity of therapeutic T cells used in the clinic with NAC would likely enhance the 

durability of T cells to persist and to control tumor once transferred in vivo.  NAC has been 

commonly used in the clinic for a multitude of diseases and conditions for many decades 

and, even at very high doses, has demonstrated a consistent and well-regarded safety 

profile (669).  However, direct administration of NAC to patients undergoing ACT may not 

effectively enhance therapy as NAC has a considerably short half-life in the plasma (477).  

Moreover, protection afforded to T cells by NAC may also confer protection to tumor cells 

in parallel, as NAC administration has been shown to increase tumor burden and 

metastasis in murine models (670,671).  However, NAC supplementation does enhance 

the antioxidant capacity of T cells (653), which led us to hypothesize that culturing T cells 

in NAC prior to adoptive transfer would make them more resistant to the downstream 

occurrence of DNA damage and also impede the onset of AICD.  Moreover, to what extent 

making T cells resistant to AICD through NAC supplementation would improve their 

therapeutic efficacy once transferred in vivo was examined in murine melanoma/self 

antigen-specific T cells, both from the native bearing transgenic Pmel-1 model and from 

T cells engineered with a TRP-1 specific TCR, both cultured in NAC prior to adoptive 

transfer into B16-F10 melanoma challenged mice.  Additionally, human TIL1383I TCR 
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transduced cells, though not able to persist in a xenograft model, demonstrated 

enhanced in vitro cytolytic ability after rapid expansion in NAC. 

   

Culturing Pmel-1 murine T cells in NAC enhances antioxidant capacity and diminishes 
their susceptibility to γH2AX induction and AICD 
 

We used the Pmel-1 transgenic mouse as our first model, which has been a well-

established model to demonstrate improvements in the efficacy of ACT therapy, notably 

in that T cells from the Pmel-1 transgenic mouse recognize the “self” melanoma 

associated antigen gp10025-33 in the poorly immunogenic B16 melanoma tumor cell (323).  

Harvested splenocytes from Pmel-1 mice were activated with gp10025-33 peptide and IL-2 

and then were cultured with or without the presence of NAC (10mM) added to the culture 

medium for 6 days.  Prior to use in adoptive transfer, the effect of NAC supplementation 

was characterized on these in vitro cultured cells.  Indeed, Pmel-1 T cells cultured in NAC 

demonstrated an enhancement in antioxidant capacity as indicated by an increase in 

surface thiols as exhibited by the thiol-reactive maleimide dye (Fig. 16).  Conversely, there 

was a decrease in the expression of the oxidative stress dye DCFDA (Fig. 16). Moreover, 

NAC cultured T cells exhibited a decrease in DNA damage as denoted by reduced levels of 

γH2AX when T cells were restimulated with gp10025-33 pulsed irradiated splenocytes, 

which was consistent with these cells also being more resistant to AICD (Fig. 17).  

Together, these results affirm that culturing cells in NAC confers an increase in antioxidant 

capacity which subsequently makes cells more resistant to TCR restimulation induced 

DNA damage and AICD. 
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Figure 16. Pmel-1 T cells cultured in NAC exhibit enhanced antioxidant capacity.  
Representative histograms (n=2) of Vβ13+CD8+ gated Pmel-1 splenocytes which were 
activated with gp10025-33 peptide and cultured for 6 days ± 10mM NAC.  Cells were 
stained with the surface thiol reactive C2Maleimide dye (left panel) or the oxidative 
stress indicating DCFDA dye (right panel). 
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Figure 17. Pmel-1 T cells cultured in NAC are more resistant to DNA damage and AICD 
upon TCR restimulation. Pmel-1 splenocytes which were activated with gp10025-33 
peptide and cultured ± 10mM NAC for 6 days were then co-cultured overnight at a 1:1 
ration with irradiated splenocytes pulsed with gp10025-33 peptide (1µg/mL).  (A) 
Representative contour plots denoting γH2AX expression of Vβ13+CD8+ gated cells 
restimulated with gp10025-33 peptide (B) Quantification (mean ± SEM) of percent 
Annexin V positive cells amongst Vβ13+CD8+ gated cells (n=2, *p<0.05). 
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Pmel-1 murine T cells cultured in NAC demonstrate enhanced in vivo persistence after 
adoptive transfer 
 

To determine if increased resistance to DNA damage and AICD conferred an 

improvement in in vivo tumor control, these Pmel-1 T cells, which had been cultured with 

or without NAC (10mM) for 6 days, were adoptively transferred via retro-orbital infusion 

into mice challenged with a subcutaneous injection of B16-F10 (3x105) murine melanoma 

cells 6 days prior to transfer.  Mice additionally received a 5 Gy dose of whole-body 

irradiation the day before adoptive transfer in order to parallel patient lymphodepletion 

practiced in the clinic.  To monitor the persistence of transferred cells, blood draws were 

taken from the tail veins of recipient mice 5 and 12 days after transfer which 

demonstrated that there was a significant enhancement in the percentage of Vβ13+CD8+ 

Pmel-1 T cells in the blood of mice which had received NAC cultured Pmel-1 T cells 

compared to control cultured cells (Fig. 18a). Similarly, there was a 2.2-fold increase in 

the percentage of Vβ13+CD8+ cells in the spleens of recipient mice receiving NAC cultured 

T cells (Fig. 18b).  Strikingly, in mice receiving Pmel-1 T cells cultured in NAC, close to 40% 

of T cells within the tumor were Vβ13+CD8+ positive, whereas effector T cells in the 

tumors of mice receiving Pmel-1 T cells cultured in the absence of NAC were scarcely 

detectable (~1.2%, Fig. 18c).  Together, these results demonstrate that Pmel-1 T cells 

cultured in NAC, which are resistant to AICD in vitro, exhibit enhanced persistence once 

they are transferred in vivo into a tumor challenged host.  
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Figure 18. Pmel-1 T cells cultured in NAC exhibit enhanced persistence once 
transferred in vivo. C57BL/6 wild type mice were subcutaneously injected with 3x106 
B16-F10 murine melanoma cells.  After 6 days of tumor establishment, mice were 
irradiated (5Gy) and treated with 2x106 Pmel-1 T cells which had been cultured ± NAC 
(10mM) for 6 days and reactivated with gp10025-33 peptide (1µg/mL) overnight prior to 
transfer. (A) Blood was collected from the tail vein of recipient mice on Days 5 and 12 
post-transfer.  Displayed is the percent of Vβ13+CD8+ cells of CD3+ gated cells for each 
individual mouse.  Bars in graph represent the quantification of mean ± SEM (B, C) 
Spleens and tumors were harvested from a subset of mice 6 days after adoptive transfer 
and processed into single-cell suspensions.  Displayed is the percent of Vβ13+CD8+ cells 
of CD3+ gated cells harvested from (B) the spleen or (C) the tumor for each individual 
mouse. Bars in graph represent the quantification of mean ± SEM (*p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001). 
 
 

 

  



www.manaraa.com

89 

Pmel-1 murine T cells cultured in NAC maintain resistance to DNA damage and AICD 
upon ex vivo restimulation 
 

Recovered splenocytes and TILs were stimulated ex vivo with gp10025-33 peptide 

to determine susceptibility to DNA damage and cell death.  Because insufficient 

Vβ13+CD8+ cells were recovered from tumors of mice that received control cells, we 

compared Pmel-1 T cells isolated from tumors of mice receiving NAC treated cells to their 

corresponding splenocytes.  Cells which were cultured in NAC retained their resistance to 

DNA damage even after adoptive transfer as evidenced by the amount of γH2AX+ cells 

recovered from the spleen being approximately half that of controlled cultured cells (Fig. 

19a).  Moreover, levels of γH2AX in NAC cultured cells which had trafficked to the tumor 

microenvironment, were comparable to adoptively transferred cells isolated from spleens 

(Fig. 19a).  Consistent with a decrease in DNA damage susceptibility, cells cultured in NAC 

prior to adoptive transfer were less susceptible to AICD upon gp10025-33 peptide 

stimulation.  Restimulation of T cells isolated from either the spleen or tumor with 

gp10025-33 peptide shows that a majority of Pmel-1 effector T cells become Annexin V 

positive and that ex vivo culture in NAC prior to adoptive transfer resulted in a significant 

decrease in Annexin V expression among cells that had trafficked to the spleen or the 

tumor (Fig. 19b).  In addition, we found that granzyme B expression inversely correlated 

with Annexin V staining and that the strongest expression was observed on Vβ13+CD8+ 

NAC expanded cells that had trafficked to the tumor (Fig. 19c).  Together, these results 

demonstrate that the protection against DNA damage and AICD conferred to Pmel-1 T 
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cells by in vitro culture is retained once cells are removed from NAC and transferred in 

vivo. 

 

Pmel-1 murine T cells cultured in NAC demonstrate enhanced tumor control and 

improved survival status to recipient mice 

 

To determine whether resistance to DNA damage and AICD translated into a 

reduction in the tumor burden of recipient mice, twice weekly tumor measurements as 

well as the overall survival were monitored. As expected, Pmel-1 T cells are capable of 

significantly delaying tumor growth compared to mice receiving no cells (Fig. 20a, 

p=0.0025), although under the conditions we used, this did not translate into a significant 

survival benefit (Fig. 20b).  In contrast, transfer of Pmel-1 T cells that had been cultured 

in NAC resulted in highly significant delays in tumor growth compared to mice receiving 

no cells (p<0.0001) and to mice receiving Pmel-1 T cells cultured in the absence of NAC 

(p<0.0001). Expansion of cells in NAC also significantly increased median survival time 

compared to mice receiving no cells (p=0.0004) or those receiving Pmel-1 T cells (Fig. 20b, 

p=0.0002).  Together these results suggest that expanding therapeutic T cells in the 

presence of NAC prior to adoptive transfer, can result in long-lasting benefits following 

transfer that enhance persistence, tumor control, and survival. 
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Figure 19. Pmel-1 T cells cultured in NAC maintain resistance to AICD and have 
enhanced expression of the cytotoxic effector molecule granzyme B after adoptive 
transfer. C57BL/6 wild type mice were subcutaneously injected with 3x106 B16-F10 
murine melanoma cells.  After 6 days of tumor establishment, mice were irradiated 
(5Gy) and treated with 2x106 Pmel-1 T cells which had been cultured ± NAC (10mM) for 
6 days and reactivated with gp10025-33 peptide (1µg/mL) overnight prior to transfer.  
Splenocytes and TILs harvested from mice 6 days after transfer were stimulated 
overnight by co-culture at a 1:1 ratio with irradiated splenocytes pulsed with gp10025-33 
peptide and then assayed for their expression of (A) γH2AX, (B) Annexin V, or (C) 
granzyme B.  Displayed is percent positive of each indicated marker amongst Vβ13+CD8+ 
gated cells for each individual mouse. Bars in graph represent the quantification of 
mean ± SEM (*p<0.05, **p<0.01, ns=not significant). 
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Figure 20. Pmel-1 T cells cultured in NAC demonstrate improved control of tumor 
burden and survivability of recipient mice.  C57BL/6 wild type mice were 
subcutaneously injected with 3x106 B16-F10 murine melanoma cells.  After 6 days of 
tumor establishment, mice were irradiated (5Gy) and treated with 2x106 Pmel-1 T cells 
which had been cultured ± NAC (10mM) for 6 days and reactivated with gp10025-33 
peptide (1µg/mL) overnight prior to transfer. (A) Tumor growth and (B) survival was 
determined for up to 35 days after adoptive transfer in untreated mice (n=8), Pmel-1 T 
cell treated mice (n=10), and mice receiving NAC treated Pmel-1 T cells (n=12) 
(**p<0.01, ***p<0.001, ****p<0.0001). 
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TIL1383I TCR transduced human T cells expanded in NAC demonstrate an enhanced 

antioxidant capacity, resistance to AICD, and superior anti-melanoma in vitro 

cytotoxicity 

 

 The improvement in cell persistence, tumor control, and survival of recipient mice 

conferred to Pmel-1 T cells by adding NAC to the expansion culture prior to adoptive 

transfer prompted us to investigate whether NAC would be a benefit to therapeutic 

TIL1383I TCR transduced human T cells.  Autologous PBMCs derived from melanoma 

patients and healthy donor controls were activated and transduced with the TIL1383I 

TCR.  Following transduction, NAC (2mM) was added to the culture medium and 

maintained through the rapid expansion of the cells (Fig. 21a).  Though some reports have 

suggested NAC can enhance the proliferation of T cells (654), there was not any significant 

difference in the yield between cells that were expanded with or without the presence of 

NAC suggesting that NAC did not enhance the proliferation of T cells at this concentration 

(Fig. 21b).  However, NAC did enhance the antioxidant capacity of TIL1383I TCR 

transduced human T cells.  NAC REPed T cells exhibited an increased expression of surface 

thiols denoted by the C2Maleimide dye (Fig. 22a).  Conversely, TIL1383I transduced cells 

REPed in the presence of NAC demonstrate less evidence of oxidative stress via a decrease 

DCFDA staining expression (Fig. 22b).  Moreover, consistent with oxidative stress being 

upstream of DNA damage, NAC REPed cells were less susceptible to upregulation of 

γH2AX than their control cultured counterparts when stimulated with MEL624 melanoma 

cells (Fig. 22c). 
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Figure 21. Production of NAC cultured TIL1383I TCR transduced human T cells. (A) 
PBMCs were activated for 2 days with soluble anti-CD3 and then transduced with the 
TIL1383I TCR.  The day after transduction, NAC (2mM) was added to the culture medium 
after which cells were then enriched based on CD34+ expression and subject to a rapid 
expansion protocol whereby 1x106 CD34+ cells are co-cultured with 2x108 irradiated 
feeder cells supplemented with 30ng/mL anti-CD3 for 10 days with media 
replenishment at Day 5. (B) Cell counts following rapid expansion of each individual 
donor.  Bars in graph represent the quantification of mean ± SEM (n=6, ns=not 
significant). 
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Figure 22. TIL1383I TCR transduced human T cells REPed in NAC have improved 
antioxidant capacity and resistance to MEL624 induced DNA damage. TIL1383I 
transduced human T cells rapidly expanded for 10 days (± 2mM NAC) were stained with 
(A) C2Maleimide for detection of surface thiols and (B) DCFDA for detection of oxidative 
stress. (C) TIL1383I transduced cells were also co-cultured overnight with either MEL624 
(HLA-A2+) or MEL624-28 (HLA-A2ꟷ) cells at a 1:1 ratio and then stained intracellularly 
for detection of γH2AX.  Left panels display representative histogram overlays in 
CD34+CD8+ gated cells.  Right panels display quantification (mean ± SEM) of each 
indicated marker in CD34+CD8+ cells (n=6, *p<0.05, ****p<0.0001). 
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As such, we investigated whether this improvement in antioxidant capacity and 

resistance to DNA damage would improve the functional ability of NAC REPed cells to kill 

melanoma tumor cells.  TIL1383I TCR transduced human T cells which were rapidly 

expanded with or without the addition of NAC (2mM) were subsequently washed from 

the presence of NAC and co-cultured overnight with HLA-A2 matching MEL624 cells and 

HLA-A2-negative MEL624-28 cells.  MEL624 and MEL624-28 cells were labeled with 

carboxyfluorescein succinimidyl ester (CFSE) at different concentrations which allows for 

simultaneous gating of both melanoma cell types using MEL624-28 as an internal assay 

control (Fig. 23a).  After overnight culture, cells were stained with Annexin V and 7AAD 

and analyzed via flow cytometry.   Utilizing the differential CFSE staining, MEL624 and 

MEL624-28 were gated on their respective CFSE concentrations.  MEL624 gated cells 

which were co-cultured with TIL1383I TCR transduced cells REPed in NAC demonstrated 

a consistent increase in the percentage of Annexin V and 7AAD double positive cells 

compared to MEL624 cells co-cultured with control REPed cells (Fig. 23a-b).  Conversely, 

the TIL1383I TCR transduced human T cells themselves which were cultured in NAC 

exhibited increased resistance to cell death induced by tumor cells compared to control 

REPed counterparts (Fig. 23c).  Together these data demonstrate that rapidly expanding 

TIL1383I TCR transduced human T cells in NAC enhances their ability to kill MEL624 

melanoma cells while in parallel being more resistant to cell death themselves.  We 

further investigated whether addition of NAC to the rapid expansion of TIL1383I TCR 
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Figure 23. TIL1383I TCR transduced human T cells rapidly expanded in NAC exhibit 
enhanced anti-melanoma in vitro cytotoxicity.  2x104 each MEL624 (HLA-A2+) and 
MEL624-28 (HLA-A2ꟷ) cells were co-cultured overnight with TIL1383I transduced 
human T cells (REPed with or without 2mM NAC) plated at increasing Effector:Target 
ratios.  (A) Melanoma cells were gated based on being labeled with CFSE at 
differentiating concentrations.  MEL624-28 cells were labeled with CFSE at 0.01 µM and 
gated as the “CFSE-Lo” population.  MEL624 cells were labeled with CFSE at 0.1 µM and 
gated as the “CFSE-Hi” population. (B) Representative flow plot of Annexin V vs 7AAD 
expression at a 2:1 Effector:Target ratio.  (C) Quantification (mean ± SEM) of Annexin 
V/7AAD double-positive cells at expanded Effector:Target ratios.  (D) Quantification 
(mean ± SEM) of Annexin V MFI in TIL1383I transduced cells gated as CFSEnegCD34+CD8+ 
(n=5, *p<0.05, **p<0.01).  
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transduced human T cells modulated their functional capacity.  In our model system, NAC 

supplementation did not demonstrate any obvious enhancement in the functional 

capacity of cells to secrete IFNγ as there was no significant difference between NAC REPed 

and control cells (Fig. 24a).  Moreover, the surface expression of CD107a, a marker 

indicative of the degranulation of cytotoxic effector molecules (672), was also unaltered 

between T cells REPed in NAC and control cultured cells (Fig. 24b).  Additionally, there 

was no significant difference (p=0.62) between NAC and control REPed cells as to the 

expression of the cytotoxic molecule perforin (Fig. 25a).  However, in contrast, there was 

a significant increase of cells positive for the cytotoxic molecule granyzme B amongst NAC 

cultured cells (Fig. 25b). 

As these in vitro results suggested that NAC conferred an enhanced anti-

melanoma cytolytic ability to human cells similar to what was observed in vivo with the 

murine Pmel-1 model, we sought out to investigate if culturing TIL1383I TCR transduced 

cells in NAC would improve their anti-melanoma functionality in a preclinical model.  To 

do so, TIL1383I TCR transduced human T cells cultured with or without NAC were 

adoptively transferred into MEL624 challenged NSG mice.  However, transferred TIL1383I 

TCR human transduced T cells did not persist once transferred as there was no detectable 

observance of CD3+CD34+ T cells in the spleens of any mice receiving cells above the “no 

cell” controls (Fig. 26).  As such, there was no differentiation in tumor burden control 

amongst the treatment groups (Fig. 26).  Unfortunately, the failure of transferred cells to  
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Figure 24. Effect of NAC supplementation during REP on the functional capacity of 
TIL1383I TCR transduced human T cells. TIL1383I TCR transduced human T cells which 
were rapidly expanded for 10 days (± 2mM NAC) were co-cultured overnight with 
MEL624 (HLA-A2+) or MEL624-28 (HLA-A2ꟷ) cells and then (A) stained intracellularly for 
IFNγ expression (B) or preloaded with a CD107a fluorochrome conjugated antibody in 
order to assess stimulation induced surface expression.  Left panels are representative 
contour plots of indicated marker in CD34+CD8+ gated cells. Right panels are 
quantification of percent positive for each indicated marker amongst CD34+CD8+ gated 
cells.  Bars denote mean ± SEM (n=6). 
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Figure 25. Effect of NAC supplementation during REP on the functional capacity of 
TIL1383I TCR transduced human T cells. TIL1383I TCR transduced human T cells which 
were rapidly expanded for 10 days (± 2mM NAC) were stained for intracellular 
expression of (A) perforin or (B) granzyme B. Top panels are representative histograms 
comparing NAC and control cultured cells to FMO controls in CD34+CD8+ gated cells.  
Bottom panels are quantification of percent positive for each indicated marker amongst 
CD34+CD8+ gated cells.  Bars denote mean ± SEM (n=6, *p<0.05). 
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Figure 26. Lack of persistence of TIL1383I TCR transduced human T cells in NSG 
xenograft model.  10x106 CD34+ enriched TIL1383I TCR transduced cells were 
adoptively transferred into NSG mice challenged with MEL624 tumors (5x106 cells).  At 
56 days post transfer, the experiment was terminated and mice were sacrificed.  (A) 
Representative contour plots denoting CD3+ and CD34+ expression of spleens 
harvested from mice.  (B) Quantification of percent CD3+CD34+ double-positive cells 
from spleen represented in ‘A’ for each individual mouse.  (C) Tumor growth of mice 
receiving either no treatment, TIL1383I TCR transduced cells, or TIL1383I TCR 
transduced cells expanded in 2mM NAC (n=7 per treatment group). 

 

  



www.manaraa.com

102 

persist in this model did not allow for any discernment as to whether TIL1383I TCR 

transduced human T cells would demonstrate enhanced in vivo functionality from being 

expanded in the presence of NAC, and thus, a humanized model for TIL1383I TCR 

transduced cells merits further optimization. 

 

Effect of NAC supplementation on TCR transduced T cells in a murine model 

 

As we were unable to investigate the effect of NAC on in vivo tumor control using 

TIL1383I TCR transduced human T cells in a NSG xenograft model, we alternatively used 

a completely murine model whereby splenocytes from C57BL/6 wild type mice were 

transduced with the TRP-1 TCR, which recognizes the melanoma associated antigen TRP-

1  (324,326).  After activation and transduction, these cells were expanded with or 

without NAC supplementation and adoptively transferred, into lymphodepleted, B16-F10 

challenged C57BL/6 wild type mice.  As observed in the Pmel-1 model, the addition of 

NAC (10mM) to the culture of TRP-1 splenocytes enhanced the expression of surface 

thiols while concurrently diminishing the susceptibly of cells to TRP-1 peptide induced 

DNA damage and AICD as indicated by a reduction in expression of γH2AX and Annexin V 

respectively (Fig. 27). However, in contrast to the Pmel-1 model, there was no significant 

increase in the percentage of adoptively transferred NAC cultured T cells detected in the 

spleens or tumors of mice sacrificed for biodistribution analysis (Fig. 28a,b).  However, 

TRP-1 TCR transduced cells cultured in NAC did demonstrate an enhancement in their 

functional capacity when stimulated ex vivo with peptide when compared to control 
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Figure 27. In vitro characterization of TRP-1 TCR transduced murine T cells cultured in 
NAC.  (A) Representative histogram overlay of C2maleimide dye expression in 
Vβ14+CD8+ gated TRP-1 TCR transduced murine T cells cultured for 6 days ± NAC 
(10mM).  (B) Representative histogram overlay of γH2AX expression of Vβ14+CD8+ 
gated cells cultured ± NAC (10mM) after overnight restimulation with co-culture at a 
1:1 ratio with irradiated splenocytes pulsed with TRP-1 peptide (4µg/mL).  (C) TRP-1 
cells cultured ± NAC (10mM) were restimulated or not by co-culture at a 1:1 ratio with 
irradiated splenocytes pulsed with TRP-1 peptide (4µg/mL).  Displayed is representative 
histogram overlays demonstrating change in Annexin V expression in Vβ14+CD8+ upon 
TRP-1 restimulation for cells cultured with or without NAC (all panels are representative 
of n=2). 
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cultured cells.  Similar to the Pmel-1 model, there was an enhancement in the expression 

of granzyme B (Fig. 28c), and moreover, TRP-1 TCR transduced cells cultured in NAC 

demonstrated an increase in the amount of cells positive for IFNγ cytokine expression as 

well as an increase in the proliferation marker Ki-67 (Fig. 28d,e).  Additionally, TRP-1 TCR 

transduced cells cultured in NAC prior to adoptive transfer were less susceptible to 

peptide induced DNA damage and cell death in both the spleens and tumors of recipient 

mice (Fig. 29a,b).  The amount of Annexin V+ T cells was reduced by nearly half in Vβ14+ 

cells harvested from the spleens of mice receiving NAC cultured cells, and in the tumors 

of mice receiving control cultured cells, nearly 60% of Vβ14+ cells were Annexin V+ which 

was reduced 5.1-fold amongst the cells cultured in NAC prior to adoptive transfer (Fig. 

29a). Similar to observations in the Pmel model, mice receiving TRP-1 transduced cells 

that were cultured in NAC prior to adoptive transfer exhibited a significant delay in tumor 

growth compared to control cells (p=0.025), which themselves demonstrated a significant 

enhancement in outcome compared to untreated mice (Fig. 29c, p<0.0001).  Moreover, 

the transfer of TRP-1 TCR transduced cells significantly extended the median survival time 

compared to untreated mice (p=0.0289), with TRP-1 cells previously cultured in NAC 

exhibiting an even further significant extension in survival compared to control cultured 

cells (Fig. 29d, p=0.0243).  Together these results demonstrate that, similar to 

observations in native TCR bearing T cells, expanding TCR transduced cells in the presence  

of NAC can enhance their antioxidant capacity leading to a durable resistance to TCR 
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Figure 28. TRP-1 TCR transduced murine T cells cultured in NAC demonstrate 
enhanced functional capacity after adoptive transfer.  C57BL/6 wild type mice were 
subcutaneously injected with 3x106 B16-F10 murine melanoma cells.  After 6 days of 
tumor establishment, mice were irradiated (5Gy) and treated with 2x106 TRP-1 TCR 
transduced T cells which had been cultured ± NAC (10mM) for 6 days prior to transfer. 
(A) Spleens and (B) tumors were harvested from recipient mice 9 days post transfer and 
processed into single-cell suspensions.  Displayed is the percent of Vβ14+ cells of CD3+ 
gated cells from each individual mouse. (C-E) Harvested splenocytes were additionally 
stimulated overnight with a co-culture at a 1:1 ratio with irradiated splenocytes pulsed 
with TRP-1 peptide (4µg/mL) and then stained intracellularly for the expression of (C) 
granzyme B, (D) IFNγ, or (E) Ki-67.  Displayed is the percent positive for each indicated 
marker for each mouse in Vβ14+CD8+ gated cells (*p<0.05). 
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Figure 29. TRP-1 TCR transduced murine T cells cultured in NAC are more resistant to 
DNA damage and cell death while exhibiting enhancement in tumor burden control 
and survivability of recipient mice.  C57BL/6 wild type mice were subcutaneously 
injected with 3x106 B16-F10 murine melanoma cells.  After 6 days of tumor 
establishment, mice were irradiated (5Gy) and treated with 2x106 TRP-1 TCR transduced 
T cells which had been cultured ± NAC (10mM) for 6 days prior to transfer.  (A-B) 
Splenocytes and TILS harvested from mice 9 days post transfer were stimulated 
overnight with co-culture at a 1:1 ration of irradiated splenocytes pulsed with TRP-1 
peptide (4µg/mL) and then assayed for their expression of (A) Annexin V or (B) γH2AX.  
Displayed is percent positive of each indicated marker for each individual mouse in 
Vβ14+CD8+ gated cells. (C) Tumor growth and (D) survival was determined for up to 36 
days after adoptive transfer in untreated mice, mice receiving TRP-1 TCR transduced 
cells, and mice receiving TRP-1 TCR transduced cells cultured in NAC. (*p<0.05, 
**p<0.01, ****p<0.0001). 
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restimulation induced DNA damage and cell death, while additionally conferring 

enhanced functional capacity exhibited by increased granzyme B expression and delay in 

tumor growth and morbidity.  Together these results demonstrate that culturing cells in 

NAC prior to co-culture with tumor cells in vitro and adoptive transfer in vivo improves 

the anti-tumor cytolytic functionality of the T cells.  Moreover, as the improvement in in 

vivo tumor control is maintained after T cells are removed from NAC and adoptively 

transferred, these data suggest that NAC supplementation to culture media imparts a 

durable alteration and improvement in the phenotype of T cells.   
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CHAPTER 4 – CULTURE OF TIL1383I TCR TRANSDUCED HUMAN T CELLS IN N-ACETYL 

CYSTEINE ATTENUATES EXPRESSION OF EXHAUSTION ASSOCIATED RECEPTORS AND 

TRANSCRIPTION FACTORS 

 
Introduction 

In Chapter Three, we observed that melanoma antigen-specific T cells expanded 

in NAC maintained a DNA damage and AICD resistant phenotype multiple days after 

removal from NAC and subsequent in vivo transfer both in the Pmel-1 native TCR model 

as well as in murine T cells which were transduced with the TRP-1 TCR.  These 

observations suggest that NAC confers a durable alteration to the phenotype of T cells 

beyond transient antioxidant protection.  Consistent with that premise, there have been 

many reports in the literature which have demonstrated phenotypic improvements in T 

cells which have been cultured in NAC.  In addition to corroborating our observations that 

NAC increases the antioxidant capacity of T cells, NAC has also been shown to enhance 

the proliferation and cytokine production of T cells, as well as restore the functional 

capacity of T cells from advanced stage cancer patients (537,539,653,654).  However, the 

rapid expansion of therapeutic T cells to achieve a sufficient quantity for infusion 

counterproductively results in T cells that are functionally less fit for durable tumor 

control.  This decline in fitness is characterized by a degradation of telomeres (170), loss 

of the CD28 co-stimulatory receptor (170), an increase in effector-memory T cells with a 

parallel decrease in central-memory T cells (169), and an increase in the expression of 

exhaustion markers such as PD-1 (170).  The enhanced ability of TIL1383I TCR transduced 

human T cells that were rapidly expanded in NAC to kill HLA-A2 matched MEL624 cells in 

vitro (Fig. 24) suggested that NAC may protect cells from the decline in fitness caused by 
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rapid expansion.  As such, we sought to further interrogate how NAC may alter the 

phenotype of T cells when added to the culture medium during rapid expansion. 

 

Enhancement of cytotoxicity amongst NAC cultured TIL1383I transduced human T cells 
is independent of alteration in memory phenotype or costimulatory receptors 
 

As central memory cells (TCM) have been reported to be more efficacious in tumor 

control than effector memory cells (TEM) (673), as an initial approach, we investigated 

whether NAC altered the output of memory phenotype subsets of T cells at the conclusion 

of a REP.  TIL1383I transduced human T cells which had been subjected to a REP (±2mM 

NAC) were stained with fluorochrome-conjugated antibodies against CD45RO, CD62L, 

and CCR7 with TEM
 cells defined as CD45RO+CD62LLOCCR7LO and TCM cells as 

CD45RO+CD62LHICCR7HI.  Analysis of these memory markers did not reveal any major 

difference in TEM/ TCM subsets between T cells expanded with or without NAC as there 

was no significant difference in the expression of the central memory markers CD62L or 

CCR7 relative to CD45RO (Fig. 30). 

Moreover, since the expression of CD28 positively correlates with the therapeutic 

efficacy of transferred cells (162), and the engagement of co-stimulatory receptors such 

as CD28 and 4-1BB can protect T cells against AICD (171,351,352), we examined whether 

NAC modulated the levels of these co-stimulatory receptors.  As with memory markers, 

there was no enhancement in the expression of the co-stimulatory receptors CD28 or 4-

1BB (Fig. 31a-b).  However, we did detect an increase in the intensity for the expression 
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Figure 30. REP in NAC does not alter expression of memory markers on TIL1383I TCR 
transduced human T cells. TIL1383I TCR transduced human T cells which were rapidly 
expanded for 10 days ± NAC (2mM) were stained for the expression of (A) CD45RO and 
CD62L or (B) CD45RO and CCR7.  Left panels are representative flow plots showing the 
expression of CD45RO vs CD62L or CCR7 in CD8+ or CD4+ gated cells as indicated.  Right 
panels show quantification of percent positive for indicated marker for each individual 
donor. Bars denote mean ± SEM (n=7, ns=not significant). 

 

  



www.manaraa.com

111 

of the ICOS co-stimulatory receptor in cells that were expanded in NAC (Fig 31c).  

Together, these results demonstrate that improvement of the cytotoxic function of NAC 

REPed cells seems to be independent of a major alteration of memory T cells subsets or 

enhancement of co-stimulatory receptors. 

 

TIL1383I transduced human T cells rapidly expanded in the presence of NAC 

demonstrated an attenuation of exhaustion markers 

 

The rapid expansion of therapeutic T cells has been shown to enhance the 

expression of the exhaustion marker PD-1 and the senescence marker CD57 on T cells 

(170), both of which associate with impaired functionality (674,675).  Consistent with 

these previous reports, the rapid expansion of TIL1383I TCR transduced human T cells 

resulted in an increase in the expression of both PD-1 and CD57 (Fig. 32).  However, 

supplementation with NAC impeded the upregulation of these markers culminating in a 

significant decrease in the expression of PD-1 and CD57 when NAC REPed T cells were 

compared to control cultured cells. (Fig. 32). 

As exhaustion in T cells has been attributed to the relative expression levels of the 

transcription factors T-bet and EOMES, with exhausted cells exhibiting a T-betLoEomesHi 

phenotype (618), TIL1383I TCR transduced human T cells were further interrogated to 

determine if NAC modulated the expression of these transcription factors.  There was not 

a significant difference in the expression of T-bet between cells which were REPed in NAC 

and control cells (Fig. 33a).  However, in contrast, there was a significant decrease in the 
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Figure 31. Effect of NAC REP supplementation on expression of co-stimulatory 
markers on TIL1383I TCR transduced human T cells.  TIL1383I TCR transduced human 
T cells were rapidly expanded for 10 days (±2mM NAC) and were surface stained for the 
expression of (A) CD28, (B) 4-1BB, or (C) ICOS.  Left panels display representative 
histogram overlay of NAC and controlled REPed cells compared to FMO control in CD8+ 
gated cells.  Right panel display percent positive or MFI for each individual donor in 
either CD8+ or CD4+ gated cell as indicated. Bars denote mean ± SEM (n=7, *p<0.05, 
ns=not significant). 
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Figure 32. TIL1383I TCR transduced human T cells rapidly expanded in NAC display 
reduced expression of markers of exhaustion and senescence.  TIL1383I TCR 
transduced human T cells which were rapidly expanded for 10 days (± 2mM NAC) and 
were surface stained for the expression of (A) PD-1 or (B) CD57.  Left panels display 
quantification of mean ± SEM of the percent positive in CD8+ gated cells for each 
indicated marker on analysis performed on samples cryopreserved at indicated time-
points throughout the REP.  Right panels display representative contour plots of each 
indicated marker (vs side-scatter) in Post-REP samples in CD8+ or CD4+ gated cells as 
indicated. (n=7, *p<0.05). 
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percentage of cells which were EOMES+ amongst NAC REPed cells compared to control 

cells (Fig. 33b).  Together these results demonstrate that addition of NAC to the culture 

medium of rapidly expanded T cells results in the cells being less exhausted which is likely 

regulated, in part, by a reduction in the activity of the exhaustion associated transcription 

factor EOMES. 

 

TIL1383I TCR transduced human T cells rapidly expanded in NAC have reduced 

expression of the transcription factor Foxo1 

 

Upstream of EOMES, the transcription factor Foxo1 has been implicated in 

modulation of the exhausted T cell phenotype, and specifically involved in PD-1 

expression, in part through the promotion of EOMES (631).  Additionally, Foxo1 represses 

granzyme B expression (648) which was observed to increase in NAC REPed cells (Fig. 

25b).  Therefore, we predicted that NAC likely restrains the expression of Foxo1 and 

interrogated TIL1383I TCR transduced human T cells cultured in NAC for Foxo1 

expression.  Indeed, cells cultured in NAC had a nearly 2.7-fold decrease in the expression 

of the Foxo1 transcription factor in comparison to control cultured cells (Fig. 34).   

Foxo1 is inactivated via phosphorylation which both promotes its sequestration 

outside of the nucleus which restricts its activity as a transcription factor and ultimately 

aids in facilitating the ubiquitination and subsequent proteasomal degradation of Foxo1 

(640,676).  Therefore, to determine if NAC influenced the phosphorylation status of 

Foxo1, T cells were acutely treated with NAC for 60 min and then stained intracellularly  
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Figure 33. TIL1383I TCR transduced human T cells rapidly expanded in NAC display 
reduced expression of the transcription factor EOMES.  TIL1383I TCR transduced 
human T cells were rapidly expanded for 10 days (± 2mM NAC) and were stained 
intracellularly for the expression of (A) T-bet or (B) EOMES.  Left panels display 
representative histogram overlays of each indicated marker comparing NAC REPed and 
control cells to FMO control in CD8+ gated cells.  Right panels display percent positive 
or MFI for each individual donor in CD8+ and CD4+ gated cells as indicated. Bars denote 
mean ± SEM (n=7, *p<0.05, ns=not significant). 
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Figure 34. TIL1383I TCR transduced human T cells cultured in NAC have reduced 
expression of the Foxo1 transcription factor.  TIL1383I TCR transduced human T cells 
were rapidly expanded for 10 days (± 2mM NAC) and were stained intracellularly for the 
expression of Foxo1. Left panels display representative histogram overlays of each 
indicated marker comparing NAC REPed and control cells to FMO control in CD8+ gated 
cells. Right panel displays percent positive Foxo1 for each individual donor in CD8+ and 
CD4+ gated cells as indicated. Bars denote mean ± SEM (n=5, **p<0.01, ***p<0.001). 
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for expression of p-Foxo1.  Indeed, treatment of T cells with NAC induced the 

phosphorylation of Foxo1 with an approximately 20% increase in the MFI intensity of p-

Foxo1 expression (Fig. 35a).  Consistent with the role of phosphorylation in the 

degradation of Foxo1, there was also an observable rapid decline in the overall expression 

of total Foxo1 when cells were acutely treated with NAC (Fig. 35b).   

We then investigated whether NAC had an effect of upstream factors established 

to be responsible for the phosphorylation of Foxo1.  In particular, the activity of both 

mTOR and AKT have been implicated in the phosphorylation and subsequent repression 

of Foxo1 (648).  Consistently, TIL1383I TCR transduced cells which have been REPed in 

NAC demonstrated an approximate 2.14-fold increase in the expression of phospho-S6 

(Fig. 36a), a canonical marker of mTOR activity (677).  Moreover, acute treatment of T 

cells with NAC enhanced the phosphorylation of AKT (Fig. 36b).  Together, these results 

demonstrate that treatment of T cells with NAC represses the Foxo1 transcription factor 

via phosphorylation by upstream activation of mTOR and AKT pathways. 
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Figure 35. Acute treatment of T cells with NAC rapidly phosphorylates and attenuates 
the expression of Foxo1.  Human TIL1383I T cells were acutely treated with NAC 
(25mM) for 60 min and then stained intracellularly for the expression of (A) p-Foxo1 and 
(B) total Foxo1.  Left panels display representative histogram overlays of each indicated 
marker comparing NAC REPed and control cells to FMO control in CD8+ gated cells. Right 
panels display MFI or percent positive of the indicated marker for each individual donor 
in CD8+ and CD4+ gated cells as indicated. Bars denote mean ± SEM (n=5, **p<0.01, 
***p<0.001). 
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Figure 36. T cells cultured in NAC exhibit activation of mTOR and AKT pathways.  (A) 
TIL1383I TCR transduced human T cells were rapidly expanded for 10 days (± 2mM NAC) 
and were intracellularly stained for the expression of pS6. (B) TIL1383I T cells were 
acutely treated with NAC (25mM) for 60min. Bars denote mean ± SEM (n=6, *p<0.05).  
Left panels display representative histogram overlays of each indicated marker 
comparing NAC treated and control cells to FMO control in CD8+ gated cells. Right 
panels display MFI or percent positive of the indicated marker for each individual donor 
in CD8+ or CD4+ gated cells as indicated. Bars denote mean ± SEM (n=5-6, *p<0.05, 
***p<0.001).  
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CHAPTER 5 – DISCUSSION AND FUTURE DIRECTIONS 

  

The adoptive cell transfer (ACT) of melanoma-specific TILs has generated curative 

responses in upwards of 40% of patients receiving this experimental therapy (219) which 

represents a significant improvement compared to the five-year survival rate of only 

15.2% associated with standard-of-care regimens (189).  Efficacy of treatment is 

independent of an individual patient’s tumor or metastatic burden (155), but is highly 

dependent on the quality of the infused cell.  Therapeutic efficacy of transferred cells is 

ultimately constrained by the durability of the cell to persist and to maintain anti-tumor 

functionality (166).  

As a necessary mechanism of immune peripheral tolerance, activated T cells are 

programmed to undergo activation-induced cell death (AICD) upon repetitive stimulation 

of the T cell receptor (TCR).  While indispensable for the prevention of autoimmune 

disorders, AICD can potentially be problematic in the clinical manipulation of T cells for 

ACT.  As such, younger, less differentiated T cells, which are less susceptible to AICD, have 

consistently demonstrated superiority at in vivo tumor control (156,160,678).  For 

instance, central memory cells, which have been well appreciated in the literature to be 

more efficacious in ACT based tumor control than effector memory cells (673), are less 

susceptible to AICD (653).  Counterproductively, however, the rapid expansion protocol, 

necessary to generate a sufficient quantity of T cells for infusion, pushes the cells more 

towards a terminally differentiated effector phenotype (170), which ultimately makes 

them more susceptible to AICD (171).  As such, novel manipulations of ex vivo culture are 
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needed to improve the phenotype of cells generated for ACT towards being more 

resistant to AICD. 

 AICD has previously been defined to be dependent on the accumulation of ROS 

and activation of JNK (366,370), and was, contemporaneously to this thesis project, 

reported to be inhibited by the p53 inhibitor pifithrin-µ (556).  However, pifithrin-µ has 

been separately characterized as an inhibitor of the protein chaperone HSP70 inducing 

cell death by dysregulated protein aggregation (657).  As such, data generated with 

pifithrin-µ cannot be directly attributed to p53.  The use of the p53-knockout mouse in 

this thesis confirms that the presence of p53 is necessary for optimal AICD induced by TCR 

restimulation (Fig. 5).  Furthermore, the relevance of p53 in AICD was demonstrated for 

both native and transduced TCRs with either p53 knockout mice that were crossbred with 

the TIL1383I TCR expressing h3T mouse, or with p53 knockout splenocytes that were 

transduced with the TIL1383I TCR (Fig. 6).  However, the protection observed by p53 

ablation was only partial suggesting that other pathways are concurrently activated 

during AICD, or potentially, some reports have suggested that p73, a paralogue of p53, 

can compensate for p53 in p53-null cell lines (679).  Additional studies using RNA 

interference for the transient knockdown of p53 in wild type cells should be performed 

to distinguish protection from AICD from possible compensatory mechanisms in knockout 

cells.   

 Beyond demonstrating the requirement of p53 for the optimal onset of AICD, data 

from this thesis demonstrate that p53 is indeed activated upon TCR restimulation 

concurrent with the onset of cell death.  TCR restimulation induces the phosphorylation 
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of p53 on Serine-15 (Fig. 7) which allows it to dissociate from the proteasomal 

degradation induced by its chief negative regulator HDM2 (572,573).  Serine 15 is also 

located within a nuclear export signal motif on p53 which is deactivated upon Ser15 

phosphorylation (578) facilitating the accumulation of p53 in the nucleus.  Such nuclear 

accumulation, another hallmark of p53 activation (659), was also demonstrated by the 

co-localization of p53 with the Hoechst stained nucleus visualized on the Amnis 

ImageStream imaging flow cytometer (Fig. 8).  Outside of the nucleus, p53 can function 

at the mitochondria to promote formation of the mitochondrial outer membrane 

permeabilization (569,570).  However, there was no observable p53 co-localization with 

the mitochondria upon TCR restimulation (Fig. 8e), indicating that p53 likely augments 

AICD through its role as a transcription factor.  As such, future investigations should 

interrogate what p53 pro cell death gene targets (i.e. BID, BAX, AIF) are upregulated upon 

TCR restimulation (575,680).  

The role of p53 in AICD is consistent with the many reports demonstrating p53 to 

be an emerging factor in immune system regulation beyond simply maintaining genomic 

integrity.  Watanabe et al. elegantly demonstrated that p53 enforces the requirement of 

TCR signaling for the proliferation of T cells as p53KO T cells were unrestrained in 

proliferation induced by IL-2 without antigen (582).  p53 also constrains the development 

of autoimmune pathologies by promoting the differentiation of T regulatory cells (Tregs) 

(583,681).  Additionally, the data of this thesis demonstrating an active role for p53 in 

AICD makes sense of the many reports where loss of p53 expression or function 

exaggerates autoimmunity and co-associates with many autoimmune conditions where 
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defective AICD is also problematic, including arthritis (584–588), multiple sclerosis, 

(589,590), and Crohn’s disease (591,592).   

 Phosphorylation of p53 on Ser15 is indicative of a p53 response to DNA damage 

(665), and is moreover, required for subsequent cell death as an Alanine substitution on 

Ser15 thwarts cell death induced by genotoxic stress (579).  Similarly, T cells from patients 

with ataxia telangiectasia, which have mutationally dysfunctional ATM, are also resistant 

to cell death induced by DNA damaging insults (594).  Moreover, these cells are also 

resistant to phosphorylation of p53 on Ser15 (596).  Consistently, data from this thesis 

demonstrate that ATM is also activated during AICD and, as demonstrated using the ATM 

inhibitors Caffeine and KU55933, activated p-ATMSer1981 is also necessary for the 

phosphorylation of p53 on Ser15 (Fig. 9a).  Additionally, cells were protected from AICD 

via ATM inhibition (Fig. 9b), demonstrating ATM to be a novel requisite factor in the onset 

of AICD.   

 Indeed, as activation of the p-ATMSer1981/p-p53Ser15 pathway, has been classically 

defined as a DNA damage response pathway (665), data from this thesis demonstrate the 

novel finding that TCR restimulation of activated cells likely induces damage to the DNA 

as evidenced by the upregulation in active DSB repair proteins: γH2AX and p-SMC1 (Fig. 

10). This incursion of DNA damage happened very rapidly (≤15min) which is consistent 

with the kinetics of TCR restimulation induced oxidative stress accumulation (369).  This 

accumulation of oxidative stress was demonstrated to be upstream of DNA damage as 

neutralization with the antioxidant N-acetyl cysteine (NAC) prevented an uptake in ROS 

expression as well as the onset of DNA damage during TCR restimulation (Fig. 14).   
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The data from this thesis, which demonstrate that TCR restimulation results in the 

upregulation of γH2AX and pSMC-1, indicative of DNA damage (599), is consistent with 

many reports which have indicated that DNA damage is problematic for proper immune 

cell function.  Immune cells from individuals with advanced age present with an 

accumulation of DNA damage coupled with a diminished capacity in DNA double-strand 

break repair which correlates with a decline in immune function and increased 

senescence (682,683).  Moreover, the accumulation of DNA damage and downregulation 

of DNA repair machinery can even be observed within the conserved time-frame of in 

vitro culture (684,685). Transferred T cells with eroded telomeres correlate with poor 

persistence and patient responses in ACT clinical trials (161).  T cells with shorter 

telomeres, additionally, have higher baselines levels of γH2AX expression, a delayed DNA 

repair response, and are overall more susceptible to cell death (686,687).  These reports 

suggest that cells with accumulated DNA damage are less fit to efficiently control tumor.  

Consistent with this premise, Sukumar et al. have recently demonstrated that T cells with 

less γH2AX expression are indeed superior at in vivo tumor control (688).   

As the amount of DNA damage in lymphocytes has been shown to negatively 

correlate with the level of intracellular glutathione (689), we were successfully able to 

reduce the expression of the DNA damage marker γH2AX in Pmel-1 murine T cells when 

the glutathione pro-drug NAC was added to the culture media during expansion (Fig. 17).  

Affirming the role of DNA damage in the onset of AICD, these cells were also less 

susceptible to AICD when restimulated with cognate gp10025-33 peptide (Fig. 17b).  

Importantly, resistance to DNA damage and AICD was durable as Vβ13+ cells recovered 
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from the spleens of mice receiving Pmel-1 cells expanded in NAC were more resistant to 

gp10025-33 peptide induced γH2AX formation and AICD than recovered control cultured 

cells (Fig. 19).  These previously NAC cultured cells, which continued to demonstrate 

reduced susceptibility to AICD, also exhibited increase persistence in the blood and 

spleens of recipient mice as well as a strikingly 33-fold improvement in recovered Vβ13+ 

from the tumors of B16-F10 challenged mice (Fig. 18).  Consistent with the persistence of 

transferred cells being a key corollary of therapeutic success in the clinic (166), these 

more durable NAC cultured cells enhanced tumor control and survival of recipient mice 

(Fig. 20), which supports the central premise of this thesis that protecting T cells from 

AICD may bolster their therapeutic efficacy.  Moreover, enhancement of tumor burden 

control and the survivability of recipient mice was observed in murine splenocytes 

transduced with the TRP-1 TCR that were cultured in NAC prior to transfer (Fig. 29), 

affirming that supplementation of culture media with NAC during lymphocyte expansion 

to be beneficial in both native and transduced TCR models. 

Similarly, adding NAC to the culture during the rapid expansion of TIL1383I TCR 

transduced human T cells also attenuated susceptibility to DNA damage, alongside higher 

levels of surface thiols and reduced oxidative stress (Fig. 22).  Even though there was not 

an adequate model to demonstrate an enhancement of in vivo tumor control by NAC (Fig. 

26), these cells did consistently demonstrate themselves to be superior at in vitro anti-

melanoma cytotoxicity than cells cultured without the addition of NAC (Fig. 23). 

As the Pmel-1 model demonstrated that functional enhancements conferred by 

NAC culture were durable even after cells were removed from NAC and transferred in 
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vivo, we wanted to further investigate what phenotypic alternations may occur to 

therapeutic T cells cultured in NAC that would be indicative of better efficacy for ACT.  

Memory cells are more resistant to cell death induced by DNA damage than naïve cells 

(690) and central memory cells (TCM) exhibit enhanced levels of surface thiols and 

resistance to TCR restimulation induced cell death compared to effector memory cells 

(TEM) (653).  Moreover, adoptive transfer of TCM cells has demonstrated a superior ability 

to control tumor than TEM cells (673).  These studies prompted us to investigate whether 

the boosting of surface thiol levels and attenuation of DNA damage via NAC treatment 

would alter the percentages of TCM/TEM subsets.  However, there was no alteration in 

CD62L and CCR7 expression amongst CD45RO+ cells (Fig. 30) which have been well 

established to define TCM (CD45RO+CD62LHICCR7HI) and TEM (CD45RO+CD62LLOCCR7LO) 

memory subsets (691).   

The effect of NAC on the expression of CD28 and 4-1BB co-stimulatory receptors 

was also examined.  Addition of these signaling domains was one of the paramount 

improvements in CAR cell technology (105,106).  CD28 co-stimulation alongside TCR 

restimulation can protect T cells from AICD (352), and moreover, CD28 expressing cells 

are more resistant to anti-CD3 induced AICD even without CD28 ligation (692).  Similarly, 

ligation of 4-1BB also protects cells from AICD (171) and is being investigated in the clinic 

as a potential agonist therapy (693).  However, TIL1383I TCR transduced human T cells 

cultured in NAC did not differ consistently in the expression of these markers compared 

to control cells; though, in our panel, we did observe an increase in the intensity of the 

costimulatory receptor ICOS (Fig. 31). 
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The exhaustion marker PD-1 is transiently upregulated during initial T cell 

activation, yet is sustained in chronically stimulated exhausted cells (609).  Consistent 

with previous reports (170), TIL1383I TCR transduced human T cells rapidly expanded in 

our model system exhibited an increase in the exhaustion marker PD-1 as well as the 

senescence marker CD57 both of which associate with T cell dysfunction (674,675).  

However, the addition of NAC to the culture medium during rapid expansion significantly 

thwarted the expression of these markers (Fig. 32).  Beyond receptor expression, NAC 

suppressed the development of an exhausted phenotype in these T cells at the 

transcriptional level by repressing the exhaustion associated transcription factor EOMES 

(Fig. 33).  Attenuation in the development of T cell exhaustion or senescence by NAC is 

consistent with the reduction in DNA damage (γH2AX+ cells) in NAC cultured cells as 

γH2AX expression associates with cells exhibiting a senescent phenotype (694,695) and 

corresponds to a dysfunctional response to IFN-α, IL-2, and IL-6 cytokine stimulation in 

chronically stimulated T cells (696). 

EOMES, which promotes the exhausted phenotype in T cells (697), has also been 

reported to be downstream of the transcription factor Foxo1 as repression of Foxo1 

attenuates both EOMES and PD-1 expression (631).  In agreement with this role of Foxo1 

in the development of the exhausted phenotype, TIL1383I TCR transduced human T cells 

which were REPed in the presence of NAC additionally demonstrated reduced expression 

of Foxo1 in comparison to control cultured cells (Fig. 34). 

The expression of Foxo1 is regulated primarily by phosphorylation mediated by 

activated Akt.  Phosphorylation of Foxo1 results in cytoplasmic sequestration which 
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hampers its functionality as a transcription factor, and ultimately, in the cytosol, Foxo1 is 

ubiquitinated and then degraded in the proteasome (640,676).  Consistently, when T cells 

were acutely treated with NAC there was an upregulation in the expression in both 

phosphorylated Foxo1 and phosphorylated (activated) Akt (Fig. 35-36).  These data are 

consistent with other reports demonstrating the phosphorylation of Akt by NAC in other 

cell types such as neurons (698), cardiomyocytes (699), hepatocytes (700), and pancreatic 

islet cells (701).   

Foxo1 can also be repressed by mTOR as demonstrated by a report from the 

Laboratory of Protul Shrikant which showed that T cells treated with the mTOR inhibitor 

rapamycin had enhanced Foxo1 activity as evidenced by an increase in total Foxo1 

expression alongside a decrease in phosphorylated (inactive) Foxo1 (648).  Consistently 

we observed the inverse, that TIL1383I TCR transduced human T cells expanded in NAC 

had an increase in the expression of phospho-S6 (pS6) (Fig. 36a) indicative of enhanced 

mTOR pathway activity (702), alongside a decrease in Foxo1 expression.   

The restraint of Foxo1 activity by mTOR harmonizes many parallel reports in the 

literature which have demonstrated that either the repression of mTOR or promotion of 

Foxo1 achieves similar phenotypic outcomes in T cells (and vice-versa).  For instance, 

Foxo1 activity is critical in the generation of Tregs (650,651) while, conversely, repression 

of mTOR also enhances Treg development (703,704).  As CD62L and CCR7 are both direct 

target genes of Foxo1, activity of Foxo1 is critical for the development of T cell memory 

(647,649).  On the other hand, repression of mTOR also promotes the formation of 

memory (705–707).  Consistently, both the repression of mTOR and induction of Foxo1 
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enhance the expression of the memory-promoting EOMES transcription factor 

(648,649,706).    

EOMES, also associating with T cell exhaustion, is likewise promoted by Foxo1 in 

chronically stimulated T cells to generate EOMESHIPD-1HI exhausted T cells (631,697).  

Conversely, mTOR activity represses the development of T cell exhaustion.  For instance, 

the Jeff Rathmell Laboratory has recently demonstrated that defective mTORC1 signaling, 

alongside metabolic deficiencies, drives T cell exhaustion induced by chronic stimulation 

from B cell leukemia (708). Conversely, Staron et al. has shown that rescuing T cells from 

exhaustion via αPD-L1 blocking antibody (610) coincides with an increase in mTOR activity 

as evidenced by an increase in pS6 expression (631).  Moreover, inhibition of mTOR by 

rapamycin treatment counteracted the ability of αPD-L1 blockade to improve the 

functionality of exhausted T cells (631).  

These reports compliment the finding in this thesis that T cells which are less 

exhausted via NAC treatment exhibit an enhancement of mTOR activity.  However, this 

finding must be balanced in interpretation by reports which have demonstrated that 

repression of mTOR activity produces a more potent anti-tumor T cell.  Rapamycin 

treatment has been shown to enhance memory development in T cells (705,706,709).  

Moreover, treatment of T cells with rapamycin prior to adoptive transfer enhances the 

tumor burden control of the T cells and the conferred survivability of treated mice (706).  

However, as rapamycin was originally characterized as a immunosuppressant (710), the 

appropriate dosage or schedule for mTOR inhibition can be critical for optimal anti-cancer 

benefit.  Indeed, prolonging the course of rapamycin treatment in vivo can nullify the 
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memory generating benefit of a shorter course dosage schedule (711), inspiring Protul 

Shrikant to refer to rapamycin as a “rheostat” for T cell immunotherapy (712).  Similarly, 

complete ablation of Foxo1 in therapeutic T cells would likely be detrimental to anti-

tumor efficacy as Foxo1-deficient T cells present with defective homeostasis of naïve cells 

via impaired IL-7Rα expression and would likely have deficient development of long-term 

memory recall responses (646).  Therefore, the exhaustion-limiting benefit of Foxo1 

attenuation most be balanced against these more severe consequences from the 

complete knockout of Foxo1.  As such, similar to mTOR, Susan Kaech (the senior author 

of Staron, et al.) said that the challenge in quelling T cell exhaustion via Foxo1 repression 

is to find the appropriate “sweet point” for optimal benefit (713).  Treatment with NAC is 

likely a more moderate approach to Foxo1 modulation in comparison with previous 

reports which have relied on complete ablation.  Moreover, NAC may have pleotropic 

effects that may positively counteract the negative consequences of Foxo1 attenuation.  

Further studies are needed to determine what effects of NAC are mediated by Foxo1 

through the use of NAC treated Foxo1-null cells and/or co-treatment with the Foxo1 

inhibitor AS1842856 (714).   

There are several mechanisms whereby NAC may potentially modulate Foxo1 and 

mTOR expression.  NAC could potentially aid Akt in Foxo1 repression by ensuring that the 

regulatory cysteines of Akt (Cys296/Cys310) are kept in their reduced form, which is critical 

for Akt activation  (422).  Furthermore, NAC has been shown to increase phospho-ERK 

levels during TCR signaling (715).  Concurrently, phosphorylation of ERK has been shown 

to inversely correlate with the levels of sulfenic acid detected on ERK (716), and ERK 
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phosphorylation is blocked when cysteine modifications are prevented with dimedone 

treatment (430).  Activated Erk has been shown to inactivate tuberous sclerosis 2 (TSC2) 

via phosphorylation (717).  As TSC2 is a negative regulator of mTOR (718), potential ERK 

activation by NAC may facilitate an upregulation in mTOR.  Follow-up studies should 

determine if NAC modulates the cysteine residues of AKT and if it is involved in ERK 

activation.   

Beyond an attenuation of the exhausted phenotype, repression of Foxo1 could 

also provide an explanation for the enhanced levels of granzyme B observed in this thesis 

(Figs. 19, 25) as Foxo1 (and consistently rapamycin) has been demonstrated to repress 

granzyme B expression (648,706).  Additionally, while we did not observe any modulation 

of CD28 or 4-1BB co-stimulatory receptors, from expanding T cells in NAC, there was an 

increase in ICOS receptor expression, of which ligation has been shown to repress Foxo1 

(644).  

Both CCR7 and CD62L are direct target genes of Foxo1, however there was no 

observable difference in the expression of these markers between NAC and control 

cultured cells.  One potential explanation for this inconsistency may be that IL-15, which 

was also present in the cultures of rapidly expanding TIL1383I TCR transduced human T 

cells, may have bolstered the memory phenotype of the cells independent of modulation 

by Foxo1, as IL-15 is critical for the development and maintenance of long lived memory 

T cells (719,720).  As such, the expression of these markers and other data in this thesis 

may have been different or more pronounced if the cells were cultured in IL-2 alone.  Both 

IL-2 and IL-15 are common γ-chain receptor (CD132) cytokines who both additionally 
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share their respective β-chain receptor (CD122) subunits as well (721), differing only in 

their “high affinity” receptor subunits IL-2Rα (CD25) and IL-15Rα (CD215) (722).  As such, 

they both similarly signal through JAK1/3 and STAT3/5 proximal signaling pathways (723).  

Both cytokines, being originally described as “growth factors,” do induce the proliferation 

of T cells (222,724).  However, despite their shared receptor and proximal signaling units, 

IL-2 and IL-15 have divergent effects on cultured T cells.  IL-2 promotes the differentiation 

of effector T cells while also limiting persistence by priming cells to undergo AICD 

(343,344).  The contribution of IL-2 in limiting T cell persistence is highlighted by the 

attenuation of proliferative control in IL-2 deficient mice (725,726). 

In contrast, IL-15 protects T cells from AICD, as T cells from IL-15 overexpressing 

transgenic mice are resistant to AICD after being primed in IL-2 (357).  The enhancement 

of durability of T cells by IL-15 is also important for its role in maintaining memory cells as 

IL-15 deficient mice have suboptimal levels of memory cells (727).  Conversely, IL-2 

signaling impedes IL-15 driven memory formation (728) suggesting a diametric influence 

over memory development between the two cytokines.  Consistently, murine T cells 

cultured in IL-15 prior to adoptive transfer preferentially migrate to the lymph nodes of 

recipient mice while T cells cultured in IL-2 traffic to sites of induced inflammation (729).  

Studies in the Pmel-1 model, demonstrate that IL-15 cultured Pmel-1 cells have a greater 

expression of the central memory CD62L and CCR7 lymph-node homing receptors than 

cells cultured in parallel in IL-2 (730).  Furthermore, IL-15 cultured Pmel-1 cells, while 

having reduced in vitro cytolytic functionality, were superior at tumor burden control and 

also enhanced the survivability of B16 melanoma challenged mice.  As such, the addition 
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of IL-15 to the culture medium of TIL1383I transduced TCR transduced T cells may sustain 

the expression of CD62L and CCR7 central memory markers even in parallel with a 

decrease in Foxo1 expression, which may, in part explain while there was no alteration in 

these markers in NAC cultured cells.  Studies which have shown expression of these 

markers to be influenced by Foxo1 have relied on the complete ablation of Foxo1 

(645,649) which does not elucidate the consequence of moderating Foxo1 expression.  

Moreover, these studies make no attempt to rescue the central memory phenotype with 

IL-15 supplementation.  As IL-15 and Foxo1 have contrasting effects on IL-17Rα expression 

(731), it is possible they may regulate CCR7 and CD62L expression through independent 

mechanisms.   

In summation, the data presented in this thesis demonstrate that oxidative stress, 

previously defined to be a requisite factor for AICD induced by the TCR restimulation on 

activated T cells, augments into the onset of DNA damage as evidenced by an increase in 

two DNA damage response markers (H2AX, SMC-1) and subsequent activation of ATM 

and p53.  These findings suggest an additional layer of regulation which likely escalates 

the commitment of an individual T cell to death upon TCR restimulation.  Importantly, 

protection from DNA damage via culturing cells with NAC, associates with the reduced 

susceptibility to AICD and improved killing of melanoma cells both in vitro and in vivo.  

Additionally, the in vivo persistence of Pmel-1 cells was improved by NAC culture prior to 

adoptive transfer.  

Adding NAC to the culture of TIL1383I TCR human transduced T cells benefited the 

cells in several ways by a reduction in DNA damage/AICD and T cell exhaustion with a 
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concurrent increase in the cytolytic capacity of the T cells (Fig. 37).  TIL1383I TCR 

transduced cells currently being used in clinical trials were also susceptible to 

restimulation induced DNA damage, which was thwarted by both acute and long term 

culturing with NAC.  Additionally, the addition of NAC to the culture medium during rapid 

expansion quelled upregulation of the exhaustion marker PD-1 which was found to be 

regulated at the transcriptional level via repression of EOMES and Foxo1. The effect of 

NAC on T cells bolsters their effector functionality as evidenced by enhanced control of 

tumors as well as the upregulation of granzyme B, likely through counteracting repression 

by Foxo1.  However, increase in effector functionality does not seem to cause any 

decrease in the durability of the cells as evidenced by an increase in vivo persistence.  

Together this suggests that the effect of NAC is likely pleiotropic as NAC may enhance 

effector functionality, in part through the repression of Foxo1, but also enhances the 

persistence of the cell by other mechanisms which merit future investigations. 

  



www.manaraa.com

135 

 
Figure 37. Addition of NAC to culture improves the phenotype of rapidly expanded 
TIL1383I TCR transduced human T cells via three distinct mechanisms. 1) NAC 
increases the antioxidant capacity of T cells as evidenced by an increase in the 
expression of surface thiols and a decrease in the detection of the oxidative stress 
sensitive dye DCFDA (Fig. 23).  As DNA damage caused by TCR restimulation is 
dependent on ROS (Fig. 15), TIL1383I TCR transduced human T cells REPed in NAC have 
less γH2AX expression when restimulated with MEL624 cells (Fig. 23), and in parallel, 
are less susceptible to AICD (Fig. 24).  2) T cells acutely treated with NAC exhibit increase 
phosphorylation of AKT and Foxo1 (Fig. 36).  As phosphorylation of Foxo1 results in its 
nuclear sequestration and ultimately, its proteasomal degradation (640,676), TIL1383I 
transduced human T cells REPed in NAC demonstrated a reduction in Foxo1 levels (Fig. 
35).  The rapid expansion of T cells results in an increase in the exhausted T cell 
phenotype [Fig. 33 and ref (170)].  As Foxo1 is upstream of EOMES and PD-1 in the 
promotion of the EOMESHIPD-1HI exhausted T cells (631,697), these cells also exhibited 
a reduction in both EOMES and PD-1 (Figs 33,34), demonstrating that NAC restrains 
development of T cell exhaustion during rapid expansion. 3) As Foxo1 also restrains the 
expression of the cytotoxic molecule granzyme B (648), TIL1383I TCR transduced 
human T cells expanded in NAC also exhibited an increase In granzyme B (Fig. 26) which 
coincided with an increase in the in vitro anti-MEL624 cytotoxic functionality (Fig. 25). 
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CHAPTER 6 – MATERIALS AND METHODS 

 

Cells, activation, and culture 

All cells were maintained in a humidified incubator (Forma Scientific) at 37°C 

supplemented with 5% CO2.  Melanoma cell lines (human MEL624 and MEL624-28 and 

murine B16 cells) were obtained in 2013 from Drs. Michael Nishimura (Loyola University, 

Maywood IL) and Mark Rubinstein (Medical University of South Carolina, Charleston SC). 

All cells were periodically verified to be free of mycoplasma contamination using the 

MycoAlert Mycoplasma Detection Kit (Lonza) per vender protocol. Additionally, B16 cells 

were authenticated and confirmed to be free of rodent pathogens by Dr. Rubinstein.  

Normal healthy donor apheresis cells were purchased from Key Biologics, Inc. or 

Research Blood Components. Cells from melanoma patients were obtained with consent 

as part of an IRB and FDA approved clinical trial (NCT01586403). PBMCs were isolated by 

Ficoll density gradient, activated with plate-bound anti-CD3 (5μg/mL, BioLegend 

#302902) and anti-CD28 (2µg/mL, BioLegend #317304) for 3 days, washed, and cultured 

in Iscove’s Modified Dulbecco’s Medium (Mediatech) supplemented with 10% FBS, 100 

IU/mL rIL-2 (Peprotech), and 10ng/mL rIL-15 (Shenandoah), for at least 5 days prior to 

TCR restimulation. 

For studies using h3T or Pmel transgenic mice obtained from Dr. Shikhar Mehrotra 

(Medical University of South Carolina, Charleston SC), splenocytes were prepared into 

single-cell suspensions from harvested spleens by mechanical isolation and removal of 

red blood cells by incubation with ACK buffer (Gibco) for 1-2 min.  Cells are then washed 
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through a 70µm cell strainer (Fisher) and cultured in complete media supplemented with 

100U/mL recombinant IL-2.  Splenocytes from h3T mice were activated with plate-bound 

anti-CD3 (1µg/mL, BioLegend #100302) and anti-CD28 (2µg/mL, BioLegend #102102) for 

2 days prior to use in assays.  Pmel splenocytes were activated with 1µg/mL of gp10025-33 

peptide (AnaSpec) with or without supplementation with 10mM N-acetyl cysteine (NAC, 

Hospira). 

 

Transduction and rapid expansion of TIL1383I transduced T cells 

Transductions of TIL1383I Transduced T cells were performed at the Cell Therapy 

Core at Loyola University, Chicago.  Isolated PBMCs were activated with 50ng/mL soluble 

anti-CD3 (OKT3) for 2-3 days.  On the day of transduction, retroviral supernatants were 

collected from PG13 1383I A9 retrovirus producing cells and filtered through a 0.45µm 

cellulose acetate syringe filter.  Filtered virus was then spun onto retronectin coated 

plates (30μg/mL) via centrifugation (2000G, 2hrs, 37°C, with no brake).  Activated cells 

were then added to wells and centrifuged once more (2000G, 2hrs, 37°C, with no brake). 

Transduced cells were cultured for several days in AIM-V culture media (supplemented 

with 5% human AB serum, 300IU/mL recombinant human IL-,2 and 100ng/mL 

recombinant human IL-15) and then purified based on CD34 expression (CliniMACs) using 

CD34+ reagent.  Subsequently, cells undergo a REP whereby 1x106 transduced cells are 

co-cultured with 2x108 irradiated feeder cells supplemented with 30ng/mL anti-CD3.  

Cells are left undisturbed for approximately 5 days where media and cytokines are 
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replenished and then continued in culture for an additional 5 days for use in assays or 

cryopreservation. 

 

Generation of h3T/p53KO mice 

The generation of the Trp53 knockout mouse has been described in (658) and is 

commercially available from the Jackson Laboratory (Cat# 002101).  Trp53 knockout mice 

were kindly gifted to us from the laboratory of Dr. Lisa Cunningham (formerly of the Dept 

of Pathology, MUSC). The development of the h3T mouse has been described in (660) and 

is maintained in the laboratory of our collaborator Dr. Shikhar Mehrotra.  Selectively 

breeding of H3T+ mice and setting up mating pairs of h3T+/p53HET and h3T+/p53KO 

produced the most even ratio of h3T+/p53WT and h3T+/p53KO offspring.  Genotypes were 

confirmed via PCR of digested tail clips using primers directed against h3T-α F: 5’-

TCTCCCGGGCTTCTCACTGCCTAGCC-3’ R: 5’-GTTAAGGGTATAGGATGTTAAGC-3’; h3T-β F: 

5’-ATGGGCACAAGGTTGTTCTTCTATGTGGCCCTTTGTCTCC-3’ R: 5’-

GCACTAGACCGCGGGGCTCCGTCTGGATTCCAGCCC-3’ and against p53 WildType: 5’-

TATACTCAGAGCCGGCCT-3’ AND p53 Knockout (neo): 5’-TCCTCGTCGTTTACGGTATC-3’ 

(Fig. 38). 
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Figure 38. Genotype screening of p53 knockout mice. PCR was performed on tail clip 
digestions.  PCR product was then evaluated by gel electrophoresis (2% low melting 
point agarose).  Band indicating p53WT occurs at 430bp and p53KO occurs at 590bp with 
both bands occurring for heterozygotes. 
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Flow cytometry 

Cell surface staining 

For the staining of surface markers, cells were removed from assay and washed 

twice by pelleting by centrifugation (1,500rpm, 5min, 4°C) and resuspended in FACS 

Buffer (PBS w/ 5% FBS, 2mM EDTA, 0.05% NaN3, pH 7.4).  Cells were then stained with 

fluorochromes per vendor recommended concentration (diluted in FACS Buffer) for 30 

min at 4°C protected from light.  Subsequently, cells were then washed twice again in 

FACS Buffer where they were either acquired or processed further in other staining 

protocols. 

 

Annexin staining 

Cells were stained as in “Cell Surface Staining” with the exception that after 

antibody staining, cells were washed in Annexin V Binding Buffer (10mM HEPES, 140mM 

NaCl, 2.5mM CaCl2, pH 7.4).  Fluorochrome conjugated Annexin V was then added directly 

to flow staining tube 15min prior to acquisition. 

 

Intracellular staining 

For the staining of intracellular proteins, cells were initially stained as described in 

“Cell Surface Staining.”  For the staining of secreted factors such as IFNγ, Protein 

Transport Inhibitor Cocktail (500X, eBioscience #00-4980) was added to assay medium at 

least 4 hrs prior to termination of experiment. Following surface staining, cells were 

processed using the Transcription Factor Staining Buffer Set (eBioscience #00-5523).  Cells 
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were resuspended in Fixation/Permeabilization reagent and incubated for 20min.  

Following incubation, cells were washed twice in Permeabilization Buffer reagent.  After 

washing, cells were resuspended in Permeabilization Buffer and incubated for 15 min 

followed by adding fluorochromes (diluted in Permeabilization Buffer) directly to flow 

staining wells/tubes and incubated for 1-2 hrs.  Following incubation, cells were then 

washed in Permeabilization buffer and then FACS Buffer and then acquired.   

 

Intracellular staining of phospho-specific proteins 

For the staining of intracellular phospho-specific proteins, surface stain 

fluorochromes were added directly to assay media 20-30min prior to the conclusion of 

the assay.  At the conclusion of the assay cells were fixed in 2% pre-warmed (37°C) 

paraformaldehyde for 20 minutes.  Cells were then washed twice in FACS Buffer and then 

resuspended in 90% ice-cold methanol for 30min where they were then subsequently 

washed and incubated with phospho-specific fluorochromes (diluted in FACS Buffer) for 

1-2hrs.  Cells were then washed in FACS Buffer and acquired.  

 

Acquisition and analysis 

Cells were acquired on either the BD FACS Calibur, BD LSRFortessa, or the BD 

Fortessa X-20 cell analyzers in the Flow Cytometry Core of the Hollings Cancer Center.  

Analysis was performed using FlowJo Software (Tree Star, Inc.).  Cells were first gated 

based on Forward-Scatter and Side-Scatter parameters to exclude debris.  For human 

PBMC experiments, cells were then gated on either CD8+ or CD4+ cells.  TIL1383I 
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transduced human cells were additionally gated on CD34+ cells.  Murine Pmel cells were 

gated on Vβ13+CD8+ cells. TRP-1 transduced cells and h3T cells were gated on Vβ14+ or 

Vβ12+, respectively, prior to subsequent gating on CD8+ and CD4+ populations.  

 

Amnis ImageStream 

For Amnis ImageStream experiments, cells were stained with 250nM MitoTracker-

DeepRed (Cell Signal) 30min prior to the conclusion of the assay where they were then 

fixed and stained as per “Intracellular Staining of Phospho-Specific Proteins.”  Cells were 

additionally stained with 250ng/mL Hoechst (Acros Organics) prior to antibody staining.  

Samples were acquired on the Amnis ImageStream at the Flow Cytometry Core Facility at 

Loyola University, Chicago.  At least 10,000 events were acquired.  Data were analyzed 

using the IDEAS analysis software (Amnis Corporation) using the co-localization module. 

Events with a similarity score of ≥1 were defined as positive for co-localization. 

 

Recognition assay 

TIL1383I expressing h3T splenocytes (1x105) were co-cultured with 1x105 T2 cells 

pulsed with either 1µg/mL hTyr368-376 cognate or Mart-1 irrelevant peptide for 16hrs.  At 

the conclusion of the assay, cells were pelleted by centrifugation (1500rpm, 5min) and 

supernatants were harvested.  Supernatants were then assayed to determine the amount 

of mouse-IFNγ using the DuoSet ELISA Kit (R&D Systems) according to vendor protocol 

and optical density was measured using the FLUOstart OPTIMA plate reader (BMG 

Labtech) under the absorbance configuration. 
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AICD assay 

Cells were previously activated as denoted in “cell culture.” TIL1383I expressing 

cells were plated at 2x105 and co-cultured with 1x105 T2 cells pulsed with 1µg/mL hTyr368-

376 cognate or Mart-1 irrelevant peptide or with HLA-A2+ melanoma cell lines MEL624 or 

B16-A2 compared to HLA-A2‒ MEL624-28 or B16 cells as controls.  Pmel cells were co-

cultured with irradiated splenocytes pulsed with 1µg/mL gp10025-33
 peptide.  TRP-1 

transduced cells were co-cultured with irradiated splenocytes pulsed with 4µg/mL TRP-1 

peptide.  PBMCs were restimulated with 5μg/mL plate-bound anti-CD3.  Cells were 

restimulated for 4hrs or as indicated in figure legends.  Cell death was assessed by 

Annexin V staining via flow cytometry.   

 

In vitro cytotoxicity assay 

MEL624 and MEL624-28 cells were labeled with 0.1μM and 0.01μM CFSE 

(BioLegend) respectively according to vendor protocol.  Each labeled cell type melanoma 

cell type was co-cultured (2x104 each) with TIL1383I TCR transduced T cells at various 

Effector:Target ratios achieved through serial dilution of the T cells. Cells were incubated 

overnight and then stained with Annexin V & 7AAD and acquired via flow cytometry.  

MEL624 and MEL624-28 cells were gated as either CFSEHI or CFSELO cells and TIL1383I 

transduced cells were gated on the CFSE-negative CD34+ population.  Cell death was 

analyzed as percent Annexin V/7AAD double-positive for each respective population. 
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Adoptive cell transfer 

All animal experiments were performed with approval by the Institutional Animal 

Care and Use Committee at the Medical University of South Carolina.  Eight to twelve 

week old female C57BL/6 wild type mice (NCI) were subcutaneously injected with 3x105 

B16F10 murine melanoma cells.  Mice were randomized into treatment groups to ensure 

equal distribution in tumor size at initiation of the experiment.  One day prior to adoptive 

cell transfer, mice were lymphodepleted through total body irradiation (5Gy, 

nonmyeloablative).  Pmel cells (2x106) or TRP-1 transduced cells cultured in the absence 

or presence of 10mM NAC were adoptively transferred via retro-orbital injection.  Twice 

weekly, tumors were measured using calipers and tumor area (mm2) calculated by 

multiplying the length and width of two perpendicular measurements.  Mice were 

sacrificed when tumor burden reach 400mm2 or when animals exhibited signs of distress. 

 

Biodistribution analysis 

Weekly blood samples were collected from the tail vein of mice into a 

microcentrifuge tube containing PBS w/ 2mM EDTA to prevent blood clotting.  Blood 

samples were incubated with ACK buffer for 10 min to lyse Red Blood Cells.  Cells were 

subsequently washed with PBS and then surface stained for flow cytometric analysis.  A 

subset of mice where sacrificed on Day 6 post transfer and spleens and tumors were 

harvested.  Spleens and tumors were processed into single cell suspensions by mechanical 

dissociation.  Tumors were further digested in 5-10mL of Collagenase II (1mg/mL) 

incubated for 1 hr at 37°C with agitation of 250rpm.  After incubation, digests were 
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washed and resuspended in 3mL of PBS and then gently layered onto 3mL of Histopaque 

1083 (Sigma) in 15mL conical tube.  Tubes were then centrifuged at 400G for 30min (with 

Brake set to ‘1’).  Interface layer was then harvested, washed and processed for flow 

cytometric analysis.  

 

Statistical methods 

For experiments comparing stimulated and unstimulated or NAC treated and 

untreated samples from the same donor a two-tailed, paired student t-test was used to 

determine significance.  Murine studies utilized an unpaired student t-test between 

treatment groups.  For kinetic studies of expression of markers over a timecourse, a linear 

longitudinal regression was calculated utilizing generalized estimating equations with 

Wald tests used to calculate p-values between model coefficients at different observed 

time points.  For murine in vivo studies, kinetics of tumor burden was modeled using 

longitudinal linear regression with p-values calculated using a likelihood ratio test based 

on a chi-square with 2 degrees of freedom.  A log rank test was used to calculate p-value 

for differences in survival time.  Statistical significance was determined as a p-value < 0.05. 
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